Tìm x biết
7/15x X+3/8x X=9
Tìm 2 số x và y, biết7*x=3*y và x-y=16
7x=3y=>x/3=y/7=k và x-y=16
=>x=3k;y=7k
có x-y=3k-7k=-4k=16
=>k=-4
x/3=-4=>x=-12
y/7=-4=>y=-28
f)\(\dfrac{x^2-6x+9}{x^2-8x+15}=\)
l)\(\dfrac{5yx+5x+3+3y}{10xy-15x-9-6y}=\)
\(f,\dfrac{x^2-6x+9}{x^2-8x+15}\\ =\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x-5\right)}\\ =\dfrac{x-3}{x-5}\\ l,\dfrac{5xy+5x+3+3y}{10xy-15x-9+6y}\\ =\dfrac{5x\left(y+1\right)+3\left(y+1\right)}{5x\left(2y-3\right)+3\left(2y-3\right)}\\ =\dfrac{\left(y+1\right)\left(5x+3\right)}{\left(2y-3\right)\left(5y+3\right)}\\ =\dfrac{y+1}{2y-3}\)
tìm x
a/ 4x2+8x+3=0
b/ (2x+3)2=(x-6)2
c/ x3-7x2+15x-9=0
a)4x2+8x+3=0
<=>(4x2+2x)+(6x+3)=0
<=>2x(2x+1)+3(2x+1)=0
<=>(2x+1)(2x+3)=0
<=>2x+1=0 hoặc 2x+3=0
<=>x=-1/2 hoặc x=-3/2
b)(2x+3)2=(x-6)2
<=>(2x+3)2-(x-6)2=0
<=>(2x-3-x+6)(2x+3+x-6)=0
<=>(x+3)(3x-3)=0
<=>x+3=0 hoặc 3x-3=0
<=>x=-3 hoặc x=1
c)x3-7x2+15x-9=0
<=>(x3-6x2+9x)-(x2-6x+9)=0
<=>x(x-3)2-(x-3)2=0
<=>(x-3)2(x-1)=0
<=>(x-3)2=0 hoặc x-1=0
<=>x=3 hoặc x=1
1, x^4 +5x^3 +10x^2+ +15x+9=0
2. X^4 - 4x^3 - 9x^2 + 8x +4=0
2: Ta có: \(x^4-4x^3-9x^2+8x+4=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2-12x^2+12x-4x+4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-12x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-12x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2-5x^2-10x-2x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)-5x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-5x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x^2-5x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{5-\sqrt{33}}{2}\\x=\dfrac{5+\sqrt{33}}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-2;\dfrac{5-\sqrt{33}}{2};\dfrac{5+\sqrt{33}}{2}\right\}\)
1: Ta có: \(x^4+5x^3+10x^2+15x+9=0\)
\(\Leftrightarrow x^4+x^3+4x^3+4x^2+6x^2+6x+9x+9=0\)
\(\Leftrightarrow x^3\left(x+1\right)+4x^2\left(x+1\right)+6x\left(x+1\right)+9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+4x^2+6x+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^3+3x^2+x^2+6x+9\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x+3\right)+\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x^2+x+3\right)=0\)
mà \(x^2+x+3>0\forall x\)
nên (x+1)(x+3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy: S={-1;-3}
tìm x
a)x^2-x-12=0
b)x^2+3x-18=0
c)8x^2+30x+7=0
d)x^3-11x^2+30x=0
e)x^3-7x^2+15x-25=0
giúp mk vs ah!!!!!
a) Ta có: \(x^2-x-12=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
b) Ta có: \(x^2+3x-18=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=3\end{matrix}\right.\)
tìm x :8x + 15x - 3x = - 400
8x + 15x - 3x = -400
=> (8 + 15 - 3)x = -400
=> 20x = -400
=> x = -400 : 20
=> x = -20
8x + 15x - 3x = - 400
=> (8 + 15 - 3)x = - 400
=> 20x = - 400
=> x = - 400 : 20
=> x = - 20
\(8x+15x-3x=-400\)
\(\Rightarrow x\left(8+15-3\right)=-400\)
\(\Rightarrow20x=-400\)
\(\Rightarrow x=-400:20\)
\(\Rightarrow x=-20\)
Vậy x=-20
1,giải các phương trình sau
a,(x^2-x-10).(x^2-x-8)-8=0
b,(x-1).(x+1).(x+3).(x+5)+15=0
c,15x^4-8x^3-14x^2-8x+15+0
Tìm nghiệm của các đa thức sau:
C(x) = (2x-3).(5x+7)
D(x) = (15x5+4x2-8)-(15x5-x-8)
E(x) = (5x7-8x2)-(4x7+4x4)-(x7+4)
C(x)= 2x-3=0 hoac 5x+7=0
2x=0+3 5x=0-7
2x=3 5x=-7
x=3:2 x=-7:5
x=1.5 x=-1.4
Tìm nghiệm của các đa thức sau:
C(x) = (2x-3).(5x+7)
D(x) = (15x5+4x2-8)-(15x5-x-8)
E(x) = (5x7-8x2)-(4x7+4x4)-(x7+4)
a.
\(\left(2x-3\right)\times\left(5x+7\right)=0\)
TH1:
\(2x-3=0\)
\(2x=3\)
\(x=\frac{3}{2}\)
TH2:
\(5x+7=0\)
\(5x=-7\)
\(x=-\frac{7}{5}\)
Vậy \(C\left(x\right)\) có nghiệm là \(\frac{3}{2}\) hoặc \(-\frac{7}{5}\)
b.
\(\left(15x^5+4x^2-8\right)-\left(15x^5-x-8\right)=0\)
\(15x^5+4x^2-8-15x^5+x+8=0\)
\(\left(15x^5-15x^5\right)+4x^2+x+\left(8-8\right)=0\)
\(x\left(4x-1\right)=0\)
TH1:
\(x=0\)
TH2:
\(4x-1=0\)
\(4x=1\)
\(x=\frac{1}{4}\)
Vậy \(D\left(x\right)\) có nghiệm là \(0\) hoặc \(\frac{1}{4}\)
c.
\(\left(5x^7-8x^2\right)-\left(4x^7+4^2\right)-\left(x^7+4\right)=0\)
\(5x^7-8x^2-4x^7-16-x^7-4=0\)
\(\left(5x^7-4x^7-x^7\right)-8x^2-\left(16-4\right)=0\)
\(-8x^2-12=0\)
\(-8x^2=12\)
\(x^2=-\frac{12}{8}\)
mà \(x^2\ge0\) với mọi x
=> \(E\left(x\right)\) vô nghiệm
\(a,C\left(x\right)=\left(2x-3\right)\left(5x+7\right)=0\)
\(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}2x-3=0\\5x+7=0\end{array}\right.\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-\frac{7}{5}\end{array}\right.\)
Vậy \(x=\frac{3}{2}\) và \(x=-\frac{7}{5}\) là nghiệm của đa thức C(x)
\(b,D\left(x\right)=\left(15x^5+4x^2-8\right)-\left(15x^5-x-8\right)=0\)
\(\Leftrightarrow15x^5+4x^2-8-15x^5+x+8=0\)
\(\Leftrightarrow4x^2+x=0\) \(\Leftrightarrow x\left(4x+1\right)=0\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=0\\4x+1=0\end{array}\right.\) \(\Leftrightarrow\) \(\left[\begin{array}{nghiempt}x=0\\x=-\frac{1}{4}\end{array}\right.\)
Vậy \(x=0\) và \(x=-\frac{1}{4}\) là nghiệm đa thức D(x)
\(c,E\left(x\right)=\left(5x^7-8x^2\right)-\left(4x^7+4x^4\right)-\left(x^7+4\right)=0\)
\(\Leftrightarrow5x^7-8x^2-4x^7-4x^4-x^7-4=0\)
\(\Leftrightarrow-8x^2-4x^4-4=0\)
\(\Leftrightarrow-4\left(2x^2+x^4+1\right)=0\)
\(\Leftrightarrow2x^2+x^4+1=0\) \(\Leftrightarrow x^4+x^2+x^2+1=0\)
\(\Leftrightarrow x^2\left(x^2+1\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2=0\) \(\Leftrightarrow x^2+1=0\) \(\Leftrightarrow x^2=-1\) \(\Rightarrow x\in\varnothing\)
Vậy E(x) vô nghiệm