Cho x- y+z=0. CM: xy+yz-zx\(\ge\)0
Cho x,y,z >0 và x+y+z=3 CM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\ge xy+yz+zx\)
Theo bất đẳng thức Cô-Si cho ba số dương \(x^2+2\sqrt{x}=x^2+\sqrt{x}+\sqrt{x}\ge3\sqrt[3]{x^2\cdot\sqrt{x}\cdot\sqrt{x}}=3x.\)
Vậy ta có \(x^2+2\sqrt{x}\ge3x.\) Tương tự \(y^2+2\sqrt{y}\ge3y,\) và \(z^2+2\sqrt{z}\ge3z.\) Cộng các bất đẳng thức lại ta được
\(\left(x^2+y^2+z^2\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge3\left(x+y+z\right)=\left(x+y+z\right)^2\) . Suy ra
\(\left(x^2+y^2+z^2\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\ge xy+yz+zx.\) (ĐPCM)
Theo bất đẳng thức Cô-Si cho 3 số \(x^2+2\sqrt x=x^2+\sqrt x+\sqrt x\ge 3\sqrt[3]{x^2\sqrt x\sqrt x}=3x.\) Tương tự, ta cũng có \(y^2+2\sqrt y\ge3y,z^2+2\sqrt z\ge3z.\) Cộng lại ta được \(x^2+y^2+z^2+2\sqrt x+2\sqrt y+2\sqrt z\ge3(x+y+z)=(x+y+z)^2\). Từ đây khai triển bình phương vế phải sẽ được \(2(\sqrt x+\sqrt y+\sqrt z)\ge 2(xy+yz+zx).\) Do đó ta có điều phải chứng minh.
chứng minh (x+Y+Z\(\ge\)0 ) x + y + z \(\ge\) \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
`x+y+z>=0` là chưa đủ phải là `x,y,z>=0` mới đúng.
`x+y+z>=sqrt{xy}+sqrt{yz}+sqrt{zx}`
`<=>2x+2y+2z>=2sqrt{xy}+2sqrt{yz}+2sqrt{zx}`
`<=>x-2sqrt{xy}+y+y-2sqrt{yz}+z+z-2sqrt{zx}+x>=0`
`<=>(sqrtx-sqrty)^2+(sqrty-sqrtz)^2+(sqrtz-sqrtx)^2>=0` luôn đúng
Dấu `"="<=>x=y=z`
Áp dụng bdt Co-si, ta có:
\(x+y\ge2\sqrt{xy}\)
\(y+z\ge2\sqrt{yz}\)
\(z+x\ge2\sqrt{xz}\)
=> 2(x+y+z) \(\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
=> đpcm
Cho x,y,z>0 thỏa mãn xy+yz+zx=1. Chứng minh \(\frac{x}{x^2-yz+3}+\frac{y}{y^2-zx+3}+\frac{z}{z^2-xy+3}\ge\frac{1}{x+y+z}\)
Cho x,y,z >0 t/m x2+y2+z2=3.
C/m \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
Bạn tham khảo lời giải tại đây:
Cách khác:
Áp dụng BĐT AM-GM và BĐT Cauchy-Schwarz:
\(\sum \frac{x}{\sqrt[3]{yz}}\geq \sum \frac{x}{\frac{y+z+1}{3}}=3\sum \frac{x}{y+z+1}=3\sum \frac{x^2}{xy+xz+x}\)
\(\geq 3. \frac{(x+y+z)^2}{2(xy+yz+xz)+(x+y+z)}\)
Ta sẽ chứng minh: \(\frac{3(x+y+z)^2}{2(xy+yz+xz)+(x+y+z)}\geq xy+yz+xz(*)\)
Đặt $x+y+z=a$ thì $xy+yz+xz=\frac{a^2-3}{2}$
Bằng BĐT AM-GM dễ thấy $\sqrt{3}< a\leq 3$
BĐT $(*)$ trở thành:
$\frac{3a^2}{a^2+a-3}\geq \frac{a^2-3}{2}$
$\Leftrightarrow a^4+a^3-12a^2-3a+9\leq 0$
$\Leftrightarrow (a-3)(a+1)(a^2+3a-3)\leq 0$
Điều này đúng với mọi $\sqrt{3}< a\leq 3$
Do đó BĐT $(*)$ đúng nên ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$
Cho x,y,z >0
CM : \(\frac{x^3}{y}+\frac{y^3}{Z}+\frac{z^3}{x}\ge xy+yz+zx\)
Cám ơn đã bỏ thời gian giúp mình !
\(\frac{x^3}{y}+xy\ge2\sqrt{\frac{x^3}{y}.xy}=2x^2\)
Tương tự \(\frac{y^3}{z}+yz\ge2y^2;\frac{z^3}{x}+xz\ge2z^2\)
\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge2\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\ge2\left(xy+yz+zx\right)-\left(xy+yz+zx\right)\)
\(\Rightarrow\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge xy+yz+zx\)
Cho x,y,z > 0. CMR: \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
Cho x, y, z > 0. CMR: x + y + z \(\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
Biến đổi tương đương là ok mà
Ta có; \(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
<=> \(2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{xz}\ge0\)
<=> \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{xz}+x\right)\ge0\)
<=> \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{x}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
( Luôn đúng)
=> đpcm
Dấu = xảy ra <=> \(x=y=z\)
Cho x;y;z>0 thỏa mãn \(x^2+y^2+z^2=3\)
chứng minh: \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{zx}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
Ta có : Áp dụng BĐT Cauchy ba số ở mẫu ta được
\(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{xz}}+\dfrac{z}{\sqrt[3]{xy}}\ge\dfrac{x}{\dfrac{y+z+1}{3}}+\dfrac{y}{\dfrac{x+z+1}{3}}+\dfrac{z}{\dfrac{x+y+1}{3}}=\dfrac{3x}{y+z+1}+\dfrac{3y}{x+z+1}+\dfrac{3z}{x+y+1}\)Thấy: \(xy+yz+xz\le\dfrac{\left(x+y+z\right)^2}{3}\left(?!\right)\)
Ta phải chứng minh:
\(\dfrac{3x}{y+z+1}+\dfrac{3y}{x+z+1}+\dfrac{3z}{x+y+1}\ge\dfrac{\left(x+y+z\right)^2}{3}\)
\(\dfrac{x}{y+z+1}+\dfrac{y}{x+z+1}+\dfrac{z}{x+y+1}\ge\dfrac{\left(x+y+z\right)^2}{9}\)
Mà \(\dfrac{x}{y+z+1}+\dfrac{y}{x+z+1}+\dfrac{z}{x+y+1}=\dfrac{x^2}{xy+xz+x}+\dfrac{y^2}{xy+yz+y}+\dfrac{z^2}{xz+yz+z}\)
Theo C.B.S
\(\dfrac{x^2}{xy+xz+x}+\dfrac{y^2}{xy+yz+y}+\dfrac{z^2}{xz+yz+z}\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
Phải chứng minh
\(\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{\left(x+y+z\right)^2}{9}\)
\(\Leftrightarrow\dfrac{1}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{1}{9}\)
Ta có : \(xy+yz+xz\le x^2+y^2+z^2=3\)
Theo C.B.S : \(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)
\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le9\)
\(\Rightarrow\dfrac{1}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{1}{9}\)
=> ĐPCM
Cho x,y,z>0 cmr: \(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge xy+yz+zx\)
Theo như câu đưới thì
\(\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\ge x^2+y^2+z^2\ge xy+yz+xz\)(bất đẳng thức cosi)