Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Linh Châu
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 7 2020 lúc 12:21

1.

Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)

\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

2.

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)

Cộng vế với vế:

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)

3.

Từ câu b, thay \(c=1\) ta được:

\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)

Nguyễn Việt Lâm
3 tháng 7 2020 lúc 12:25

4.

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

5.

\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)

Cộng vế với vế:

\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

l҉o҉n҉g҉ d҉z҉
8 tháng 1 2021 lúc 22:31

1. bđt được viết lại thành

\(ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)

Theo bđt AM-GM thì :

\(ab+bc\ge2\sqrt{ab\cdot bc}=2\sqrt{ab^2c}=2b\sqrt{ac}\)

Tương tự : \(bc+ca\ge2c\sqrt{ab}\)\(ab+ca\ge2a\sqrt{bc}\)

Cộng vế với vế

=> \(2\left(ab+bc+ca\right)\ge2\left(a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\right)\)

=> \(ab+bc+ca\ge a\sqrt{bc}+b\sqrt{ac}+c\sqrt{ab}\)( đpcm )

Dấu "=" xảy ra <=> a=b=c

Khách vãng lai đã xóa
Nguyễn Thảo Hân
Xem chi tiết
EDOGAWA CONAN
22 tháng 12 2019 lúc 10:17
https://i.imgur.com/sjqJMto.jpg
Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
8 tháng 1 2021 lúc 22:20

hơn 1 năm rồi không ai làm :'(

a) Áp dụng bđt Cauchy ta có :

\(a+b\ge2\sqrt{ab}\)(1)

\(b+c\ge2\sqrt{bc}\)(2)

\(c+a\ge2\sqrt{ca}\)(3)

Nhân (1), (2), (3) theo vế

=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{a^2b^2c^2}=8\sqrt{\left(abc\right)^2}=8\left|abc\right|=8abc\)

=> đpcm

Dấu "=" xảy ra <=> a=b=c

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
8 tháng 1 2021 lúc 22:23

b) Áp dụng bđt AM-GM ta có :

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2\sqrt{c^2}=2c\)

TT : \(\frac{ca}{b}+\frac{ab}{c}\ge2a\)\(\frac{bc}{a}+\frac{ab}{c}\ge2b\)

Cộng vế với vế

=> \(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

=> \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)( đpcm )

Dấu "=" xảy ra <=> a=b=c

Khách vãng lai đã xóa
hoàng thị huyền trang
Xem chi tiết
Hồ Quốc Khánh
Xem chi tiết
Luân Đào
Xem chi tiết
tthnew
28 tháng 7 2019 lúc 19:15

Đề chơi căng nhỉ?

a) Dễ chứng minh VP =< 3

BĐT \(\Leftrightarrow\left(\frac{a+b}{1+a}-1\right)+\left(\frac{b+c}{1+b}-1\right)+\left(\frac{c+a}{1+c}-1\right)\ge0\)

\(\Leftrightarrow\frac{b-1}{1+a}+\frac{c-1}{1+b}+\frac{a-1}{1+c}\ge0\)

\(\Leftrightarrow\frac{\left(b-1\right)^2}{\left(1+a\right)\left(b-1\right)}+\frac{\left(c-1\right)^2}{\left(1+b\right)\left(c-1\right)}+\frac{\left(a-1\right)^2}{\left(1+c\right)\left(a-1\right)}\) >=0

Áp dụng BĐT Cauchy-Schwarz dạng Engel vào VT ta có đpcm.

P/s: Èo, sao đơn giản thế nhỉ? Em có làm sai chỗ nào chăng?

Trần Phúc Khang
28 tháng 7 2019 lúc 21:56

a, Ta có \(\frac{a+b}{a+1}=\frac{\left(a+b\right)\left(a+1\right)-a\left(a+b\right)}{a+1}=a+b-\frac{a\left(a+b\right)}{a+1}\)

\(\frac{1}{a+1}\le\frac{a+1}{4a}\)

=> \(\frac{a+b}{1+a}\ge a+b-\frac{\left(a+1\right)\left(a+b\right)}{4}=\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}a^2-\frac{1}{4}ab\)

Khi đó

\(Vt\ge\frac{3}{2}\left(a+b+c\right)-\frac{1}{4}\left(a^2+b^2+c^2\right)-\frac{1}{4}\left(ab+bc+ac\right)\)

=> \(VT\ge\frac{9}{2}-\frac{1}{4}\left(9-2ab-2bc-2ac\right)-\frac{1}{4}\left(ab+bc+ac\right)\)

=> \(VT\ge\frac{9}{4}+\frac{1}{4}\left(ab+bc+ac\right)\)

Lại có \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=3\)

=> \(VT\ge ab+bc+ac\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

b,Ta có \(\frac{a}{b\left(a+b^2\right)}=\frac{a+b^2-b^2}{b\left(a+b^2\right)}=\frac{1}{b}-\frac{b}{a+b^2}\)

\(a+b^2\ge2b\sqrt{a}\)

=> \(\frac{a}{b\left(a+b^2\right)}\ge\frac{1}{b}-\frac{1}{2\sqrt{a}}\)

Lại có \(\frac{1}{\sqrt{a.1}}\le\frac{1}{2}\left(\frac{1}{a}+1\right)\)

=> \(\frac{a}{b\left(a+b^2\right)}\ge\frac{1}{b}-\frac{1}{4}.\left(\frac{1}{a}+1\right)\)

Khi đó

\(VT\ge\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\)

=> \(VT\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1

Nguyễn Quang Định
29 tháng 7 2019 lúc 10:24

Bất đẳng thức được viết lại thành

\(\sum\frac{3-a}{1+a}\ge ab+bc+ca\)

\(ab+bc+ca\le3\) nên ta chỉ cần chứng minh

\(\sum\frac{3-a}{1+a}\ge3\)

Ta chứng minh bất đẳng thức phụ sau

\(\frac{3-a}{1+a}\ge2-a\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)

Thiết lập các bất đẳng thức tương tự ta có điều phải chứng minh

Văn Thắng Hồ
Xem chi tiết
Hồng Phúc
15 tháng 10 2020 lúc 22:48

3.

\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)

\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)

Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)

\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)

\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)

\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)

Khách vãng lai đã xóa
Trần Huỳnh Thanh Long
Xem chi tiết
Cô bé hạnh phúc
26 tháng 1 2018 lúc 20:04

+ thêm bớt bc,ca,ab lần lượt cho P ta được

\(P=\frac{a^3}{3a+3bc-\left(ab+ac+bc\right)}+\frac{b^3}{3b+3ca-\left(ab+ac+bc\right)}+\frac{c^3}{3c+3ab-\left(ab+ac+bc\right)}+3abc\)

áp dụng BDT cô si cho mẫu ta có

\(3a+3bc\ge2\sqrt{9abc}=6\sqrt{abc}\)

suy ra

\(\frac{a^3}{3a+3bc-\left(ab+ac+bc\right)}\le\frac{a^3}{6\sqrt{abc}-\left(ab+ac+Bc\right)}\)

tương tự với các BDT còn lại suy ra :

\(P\le\frac{a^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+\frac{b^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+\frac{c^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+3abc\)

đên đây easy chưa ? chung mẫu + lại với nhau ta được

\(P\le\frac{a^3+b^3+c^3}{6\sqrt{abc}-\left(ab+ac+bc\right)}+3abc\)

áp dụng BDT cô si ta có

\(ab+bc+ca\le a^2+b^2+c^2\) luôn đúng thay vào ta được

ta có   \(a^2+B^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\) thêm bớt + hằng đẳng thức

thay vào và đổi dấu ta được

\(P\le\frac{a^3+b^3+c^3}{6\sqrt{abc}-9+2\left(ab+bc+Ca\right)}+3abc\)

có  \(ab+1\ge2\sqrt{ab}\)

\(ca+1\ge2\sqrt{ac}\)

\(bc+1\ge2\sqrt{bc}\)

\(\Rightarrow2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\le ab+bc+ca+3\)

ta lại có

\(\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\le a+B+c\left(cosi\right)\) suy ra

\(2\left(a+b+c\right)\le ab+bc+ca+3\Leftrightarrow6\le ab+Bc+ca+3\Leftrightarrow ab+bc+ca\ge3\)

  suy ra  

\(P\le\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-9+2\left(3\right)}=\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-3}\)

\(P\le\frac{\left(a^3+b^3+c^3\right)}{6\sqrt{abc}-3}+3abc\)

ta có

\(a.a.a\le\frac{\left(a+a+a\right)^3}{27}\)

\(b.b.b\le\frac{\left(b+b+b\right)^3}{27}\)

\(c.c.c\le\frac{\left(c+c+C\right)^3}{27}\)

\(a^3+b^3+c^3\le\frac{\left(3a\right)^3+\left(3b\right)^3+\left(3c\right)^3}{27}\)

bạn ơi chắc là đề sai rồi làm sao có thể đi chứng minh được cái

\(a^3+b^3+c^3\le a+b+c\) 

bạn xem lại đi nha @@

dbrby
Xem chi tiết
 Mashiro Shiina
24 tháng 4 2019 lúc 11:44

Áp dụng bđt AM-GM:

\(\frac{a^3}{b}+ab\ge2a^2\)

\(\frac{b^3}{c}+bc\ge2b^2\)

\(\frac{c^3}{a}+ac\ge2c^2\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+bc+ac\ge2a^2+2b^2+2c^2\ge2ab+2ac+2bc\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ac\left(đpcm\right)\)

\("="\Leftrightarrow a=b=c\)