Cho đa thức f(x)=\(x^{2009}+x^{2008}+1\).Số dư của đa thức f(x)cho đa thức \(x^2+x+1\)
Cho đa thức f(x)=x^2009+x^2008+1 Số dư trong phép chia đa thức f(x)cho đa thức x^2+x+1là
Lời giải:
$f(x)=x^{2009}+x^{2008}+1$
$=(x^{2009}-x^2)+(x^{2008}-x)+(x^2+x+1)$
$=x^2(x^{2007}-1)+x(x^{2007}-1)+(x^2+x+1)$
$=x^2[(x^3)^{669}-1]+x[(x^3)^{669}-1]+(x^2+x+1)$
$=x^2(x^3-1)[(x^3)^{668}+....+1]+x(x^3-1)[(x^3)^{668}+...+1]+(x^2+x+1)$
$=x^2(x-1)(x^2+x+1)[(x^3)^{668}+....+1]+x(x-1)(x^2+x+1)[(x^3)^{668}+...+1]+(x^2+x+1)$
$=x^2(x-1)(x^2+x+1)A(x)+x(x-1)(x^2+x+1)A(x)+(x^2+x+1)$
$=(x^2+x+1)[x^2(x-1)A(x)+x(x-1)A(x)+1]\vdots x^2+x+1$
tìm số dư trong phép chia đa thức f(x)=x2009+x2008+.....+x+1 cho x2+1
Lời giải:
$f(x)=(x^{2009}+x^{2007}+x^{2005}+...+x^3)+(x^{2008}+x^{2006}+....+x^2)+(x+1)$
$=[x^{2007}(x^2+1)+x^{2003}(x^2+1)+...+x^3(x^2+1)]+[x^{2006}(x^2+1)+x^{2002}(x^2+1)+...+x^2(x^2+1)]+(x+1)$
$=(x^2+1)(x^{2007}+x^{2003}+...+x^3)]+(x^2+1)(x^{2006}+...+x^2)+(x+1)$
$=(x^2+1)(x^{2007}+x^{2003}+...+x^3+x^{2006}+...+x^2)+(x+1)$
$\Rightarrow f(x)$ chia $x^2+1$ dư $(x+1)$
Cho đa thức f(x)=x^3+x^2-2
Số dư trong phép chia đa thức f(x) cho x+1 là f(-1) =-2
Số dư trong phép chia đa thức f(x) cho x-2 là f(2) =10
Số dư trong phép chia đa thức f(x) cho x-1 là f(1)=0,nghĩa la f(x) chia hết cho (x-1)
Em háy chọn 1 đa thức f(x) cho (x-a) với f(a) bằng cách cho a nhận các giá trị bất kì để cùng kiểm tra kết quả sau :
"Số dư trong phép chia đa thức f(x) cho (x-a) đúng bằng f(a)’’
Cho mình xin cách làm đi
Nó là định lí Bézout đấy bạn ^^
Định lí Bézout : Phần dư trong phép chia đa thức f(x) cho nhị thức g(x) = x - a là một hằng số bằng f(a)
Chứng minh : Theo định lí cơ bản ta có : f(x) = ( x - a ).P(x) + R(x) (1)
Ở đây, g(x) = x - a có bậc là bậc nhất mà bậc của dư R(x) phải nhỏ hơn bậc của g(x), vậy R(x) phải là một hằng số, thay x = a trong đẳng thức (1) ta có : f(a) = ( a - a ).P(a) + R => R = f(a)
Hệ quả : Nếu a là nghiệm của f(x) thì f(x) chia hết cho x - a
Ta dùng hệ quả của định lí Bézout để phân tích đa thức thành nhân tử khi đã biết một nghiệm
a) Cho đa thức f(x) = x^100 + x^99 + ... + x^2 + x + 1 . tìm dư của phép chia đa thức f(x) cho đa thức x^2 -1
b) Tìm đa thức f(x) biết rằng f(x) chia cho x-2 thì dư 2, f(x) chia cho x-3 thì dư 7 , f(x) chia cho x^5 - 5x + 6 thì đc thương là 1 - x^2 và còn dư
Huyền hỏi 2 bài liên tiếp à viết nhanh thế
Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?
Biết rằng đa thức f(x) chia cho đa thức g(x) = x - 2 được dư là 21, chia cho đa thức h(x) = x ^ 2 + 2 được đa thức dư là 2x−1. Tìm đa thức dư khi chia đa thức f(x) cho đa thức h(x).g(x)
Đặt \(A\left(x\right)=h\left(x\right)\cdot g\left(x\right)\)
\(=\left(x-2\right)\left(x^2+2\right)\)
\(=x^3+2x-2x^2-4=x^3-2x^2+2x-4\)
=>A(x) có bậc là 3
=>Đa thức dư khi F(x) chia cho A(x) sẽ có bậc tối đa là 2
Gọi đa thức dư đó có dạng là \(B\left(x\right)=ax^2+bx+c\) , gọi đa thức thương có dạng là \(Q\left(x\right)\)
Do đó, ta có: \(f\left(x\right)=Q\left(x\right)\left(x-2\right)\left(x^2+2\right)+ax^2+bx+c\)
f(x) chia x-2 dư 21
=>f(2)=21
Thay x=2 vào \(f\left(x\right)=Q\left(x\right)\left(x-2\right)\left(x^2+2\right)+ax^2+bx+c\) , ta được:
\(f\left(2\right)=q\left(2\right)\left(2-2\right)\left(x^2+2\right)+a\cdot2^2+b\cdot2+c\)
=>4a+2b+c=21
\(f\left(x\right)=Q\left(x\right)\left(x-2\right)\left(x^2+2\right)+ax^2+bx+c\)
\(=Q\left(x\right)\left(x-2\right)\left(x^2+2\right)+ax^2+2a+bx+c-2a\)
\(=\left(x^2+2\right)\left\lbrack Q\left(x\right)\left(x-2\right)+a\right\rbrack+bx+c-2a\)
f(x) chia \(x^2+2\) dư 2x-1 nên bx+c-2a=2x-1
=>b=2 và c-2a=-1
4a+2b+c=21
=>4a+4+c=21
=>4a+c=17
mà c-2a=-1
nên 4a+c-c+2a=17+1
=>6a=18
=>a=3
c-2a=-1
=>2a=c+1
=>c+1=6
=>c=5
Vậy: Đa thức dư là \(B\left(x\right)=3x^2+2x+5\)
f(x) chia \(x^2+2\) dư 2x-1
biết đa thức f(x) chia cho đa thức x-2 dư 7 , chia cho đa thức x2+1 dư 3x+5 . Tìm dư trong phép chia đa thức f(x) cho đa thức (x2+1)(x-2)
đơn giản thì trả lời đi , fly color à bạn :)))
Cho đa thức f(x)=x^3-3x^2+2. Tìm đa thức thương và đa thức dư trong phép chia đa thức f(x) cho 2x+1
Bài 1. Tìm đa thức P(x) = x2 + ax + b. Biết rằng nghiệm của đa thức P(x) cũng là nghiệm của đa thức Q(x) = (x+2)(x-1)
Bài 2. Cho đa thức f(x) thỏa mãn f(x) + x f(-x) = x + 1 với mọi giá trị của x. Tính f(1)
Bài 3. Cho đa thức P(x) = x(x - 2) - 2x + 2m - 2015 (x là biến số, m là hằng số). Tìm m để đa thức có nghiệm.
Cho đa thức \(f\left(x\right)=x^{50}+x^{49}+x^{48}+...+x^2+x+1\) . tìm dư của phép chia đa thức f(x) cho đa thức \(x^2-1\)