a,(x-2)2+4(x-1)
b,2-x/(x+1)^3 + x+1/x^3-25
Rút gọn biểu thức
A=(x-2)(x^2+2x+4)-(x+1)^3+3(x-1)(x+1)
B=(x^4-5x^2+25)(x^2+5)-(2+x^2)^3+3(1+x^2)^2
Rút gọn biểu thức
A=(x-2)(x^2+2x+4)-(x+1)^3+3(x-1)(x+1)
B=(x^4-5x^2+25)(x^2+5)-(2+x^2)^3+3(1+x^2)^2
a) x(2x - 1) - (x - 2)(2x + 3) = 5
b) (x - 3)2 - 25 = 0
c) (x - 1) (2 - x) + (x + 3)2 = 4 - 2x
a) x(2x - 1) - (x - 2)(2x + 3) = 5
2x2 - x - 2x2 - 3x + 4x + 6 = 5
0x = -1 (vô lý)
Vậy không tìm được x
b) (x - 3)2 - 25 = 0
(x - 3)2 - 52 = 0
(x - 3 - 5)(x - 3 + 5) = 0
(x - 8)(x + 2) = 0
\(\Rightarrow\) x - 8 = 0 hoặc x + 2 = 0
*) x - 8 = 0
x = 0 + 8
x = 8
*) x + 2 = 0
x = 0 - 2
x = -2
Vậy x = 8; x = -2
c) (x - 1)(2 - x) + (x + 3)2 = 4 - 2x
2x - x2 - 2 + x + x2 + 6x + 9 = 4 - 2x
9x + 7 = 4 - 2x
9x + 2x = 4 - 7
11x = -3
x = \(\dfrac{-3}{11}\)
Vậy x = \(\dfrac{-3}{11}\)
rút gọn
P=(√ x/3+√ x+2x/9-x ):(√ x-1/x-3√ x -2/√ x)
A=(√ x-2/√ x+5+√ x/√ x-5 +x+9/25-x):1-√ x/5+√ x
B=(1/x-4 - 1/x-4√ x+4):√ x/2√ x -x
\(P=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-2x}{x-9}:\dfrac{\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-x-3\sqrt{x}}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{-\sqrt{x}+5}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+3\right)\cdot\sqrt{x}\left(\sqrt{x}-3\right)}{\left(x-9\right)\left(-\sqrt{x}+5\right)}=\dfrac{-x}{-\sqrt{x}+5}\)
\(A=\left(\dfrac{\sqrt{x}-2}{\sqrt{x}+5}+\dfrac{\sqrt{x}}{\sqrt{x}-5}+\dfrac{x+9}{25-x}\right):\dfrac{1-\sqrt{x}}{5+\sqrt{x}}\)
\(=\dfrac{x-7\sqrt{x}+10+x+5\sqrt{x}-x-9}{\left(x-25\right)}\cdot\dfrac{\sqrt{x}+5}{1-\sqrt{x}}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-5\right)\left(1-\sqrt{x}\right)}=\dfrac{1-\sqrt{x}}{\sqrt{x}-5}\)
\(B=\left(\dfrac{1}{x-4}-\dfrac{1}{x-4\sqrt{x}+4}\right):\dfrac{\sqrt[2]{x}}{2\sqrt{x}-x}\)
\(=\dfrac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+2\right)}\cdot\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(=\dfrac{-4}{x-4}\)
giải pt :
a, \(x^2-4x-2=2\sqrt{x^3+1}\)
b, \(x^2-7x+1=4\sqrt{x^4+x^2+1}\)
c, \(3\sqrt{x^2+4x-5}+\sqrt{x-3}=\sqrt{11x^2+25+2}\)
1)a)2x-13=25+6x
b)12-x=3x+6
c)40-(25-2x)=x
d)|x-3|=5
e)|x-3|+(x+2)+(x+1)=12
2)tính
a)(-1).(-2).(-3).(-4).(-5).[(-3)-(-5)]
b)1-2+3-4+5-6+...-98+99
3)tim x
a)(x-1).(y-2)=5
b)x.(y-3)=12
Tìm x
a) 2x+3/24 = 3x-1/32
b) x+1/x-2 = 5/6
c) -(x+1)/25 = -4/x+1
d) (5-x).2/25 = -2/x-5
e) x+1/x+4 = x-3/x-2
Tìm X
a) \(2x+\dfrac{3}{24}=3x-\dfrac{1}{32}\)
\(\Leftrightarrow\left(2x+\dfrac{3}{24}\right)-\left(3x-\dfrac{1}{32}\right)=0\)
\(\Leftrightarrow2x+\dfrac{3}{24}-3x+\dfrac{1}{32}=0\)
\(\Leftrightarrow\left(\dfrac{3}{24}+\dfrac{1}{32}\right)+\left(2x-3x\right)=0\)
\(\Leftrightarrow\dfrac{5}{32}-x=0\)
\(\Leftrightarrow x=\dfrac{5}{32}\)
1,tìm x a) (x+3)^2-(x-2)^3=(x+5)(x^2-5x+25)-108 b) 4(x^2+2x-1)^2-(2x^2-3)^2=0 c) (2x-1)(4x^2+2x+1)-(x-2)^2=-x(x-6)-5
a) \(\left(x+3\right)^2-\left(x-2\right)^3=\left(x+5\right)\left(x^2-5x+25\right)-108\)
\(\Leftrightarrow x^2+6x+9-x^2+4x-4=x^3-5x^2+25x+5x^2-25x+125-108\)
\(\Leftrightarrow x^3-10x+12=0\Leftrightarrow\left(x-2\right)\left(x^2+2x+6\right)=0\)
\(\Leftrightarrow x=2\)( do \(x^2+2x+6=\left(x+1\right)^2+4\ge4>0\))
Giải các phương trình sau: a) 4 3x 25 4x b) 2 x 1 x 1 x 3 0 c) 1 3 9 x 1 x 2 (x 1)(x 2)
\(a,4+3x=25-4x\\ \Leftrightarrow7x=21\\ \Leftrightarrow x=3\\ b,\left(x-1\right)^2+\left(x-1\right)\left(x+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-1+x+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(2x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c, ĐKXĐ:\(x\ne-1,x\ne2\)
\(\dfrac{1}{x+1}+\dfrac{3}{x-2}=\dfrac{9}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}+\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{9}{\left(x+1\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x-2+3x+3-9}{\left(x+1\right)\left(x-2\right)}=0\\ \Rightarrow4x-8=0\\ \Leftrightarrow x=2\left(ktm\right)\)