tìm só tự nhiên nhỏ nhất cho 5, cho 7, cho 9 có số dư lần lượt là 3; 4; 5
Tìm số tự nhiên nhỏ nhất chia cho 8, 10 , 15, 20 có só dư lần lượt là 5, 7, 12, 17 và chia hết cho 41
Gọi a là số tự nhiên nhỏ nhất cần tìm :
Theo bài ra, ta có:
a \(⋮8\)(dư 5 )
\(a⋮10\left(dư7\right)\)
\(a⋮15\left(dư12\right)\)
\(a⋮20\left(dư17\right)\)
Ta tìm BCNN ( \(8;10;15;20\))
8=23
10=2.5
15=3.5
20=22.5
Nên BCNN là : 120
Lại có: \(a⋮41\)nên \(a=41.k\left(k\in N\right)\)
\(\Rightarrow n+3=41k+3\)
\(\Rightarrow41k+3⋮120\)
\(\Rightarrow41k⋮120-3\)
\(\Rightarrow41k⋮117\)
\(\Rightarrow a⋮117\)
Theo bài thì ta có:
\(a⋮41vs117\)
\(\Rightarrow a\in BC\left(41vs117\right)\)
Vì a là \(ℕ\)nhỏ nhất thuộc BC của 41 và 117
\(\Rightarrow a=BCNN\left(41;117\right)\)
Mà 41 và 117 là hai số nguyên tố trùng nhau nên BCNN ( 41;117 ) = 4797
Vậy số cần tìm là 4797
Tìm số tự nhiên nhỏ nhất chia cho 5; 7; 9 có con số dư lần lượt là 3; 4; 5
Gọi số tự nhiên nhỏ nhất là x
Theo đề, ta có:
x-3 thuộc B(5) và x-4 thuộc B(7) và x-5 thuộc B(9)
mà x nhỏ nhất
nên x=158
Tìm số tự nhiên nhỏ nhất chia cho 5 7 9 có số dư lần lượt là 3 4 5
tìm số tự nhiên a nhỏ nhất biết a chia cho 5 cho 7 cho 9 có số dư lần lượt là 3 , 4 , 5.
Gọi số cần tìm là a
Giả sử a chia cho 5 được b dư 3 ta có
a = 5b + 3
2a = 10b + 6 = 10b + 5 + 1
2a – 1 = 10b + 5 hay nói cách khác 2a – 1 chia hết cho 5(1)
giả sử a chia cho 7 được c dư 4 ta có
a = 7c + 4
2a = 14c + 8 = 14c + 7 + 1
2a – 1 = 14c + 7 hay nói cách khác 2a – 1 chia hết cho 7(2)
giả sử a chia cho 9 được d dư 5 ta có
a = 9a + 5
2a = 18d + 10 = 18d + 9 + 1
2a – 1 = 18d + 9 hay 2a – 1 chia hết cho 9(3)
từ 1, 2 và 3 ta có 2a - 1 chia cho 5, 7, 9 vì yêu cầu tìm số tự nhiên nhỏ nhất nên 2a – 1 là bội số chung nhỏ nhất của (5,7,9) = 5.7.9 = 315
suy ra 2a – 1 = 315
2a = 316
a = 158
vậy số cần tìm là 158
Tìm số tự nhiên nhỏ nhất biết số đó chia cho 5 , 7, 9 có số dư lần lượt là 3 , 4 , 5
Tìm số tự nhiên nhỏ nhất biết số đó chia cho 5 , 7, 9 có số dư lần lượt là 3 , 4 , 5
Khi chia só tự nhiên a lần lượt cho ba số 3 ; 5 ; 7 thì được các số dư là 2 ; 4 ;6
1/ Chứng minh ( a + 1 ) chia hết cho 3 ; 5 ; 7
2/ Tìm số a nhỏ nhất
Số a chia 3;5;7 dư 2;4;6
Nên a+ 1 chia hết cho 3;5;7
3 = 3 ; 5 = 5 ; 7 = 7
=> BCNN(3;5;7) = 3.5.7 = 105
a = 105 - 1 = 104
Tìm số tự nhiên nhỏ nhất và lớn nhất có 9 chữ số khi chia cho 5 , 7 , 9, 11 thì có số dư lần lượt là 3 , 4 , 5, 6 .
Gọi số phải tìm là x, ta có 2x-1 chia hết cho 5,7,9,11
=> 2x-1 là bội chung của 5,7,9,11
BCNN(5;7;9;11)=3465
Biến đổi và đưa ra x nhỏ nhất có 9 chữ số:100001633; x lớn nhất có 9 chữ số là:999997268