Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ren Phạm
Xem chi tiết
Đại gia không tiền
Xem chi tiết
Vimo Asdred
14 tháng 4 2017 lúc 21:29

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}\)

   \(=\frac{1.3}{2^2}+\frac{2.4}{3^2}+\frac{3.5}{4^2}+...+\frac{49.51}{50^2}\)

   \(=\frac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)

    \(=\frac{\left(1.2.3...49\right)\left(3.4.5...51\right)}{2^2.3^2.4^2...50^2}\)

    \(=\frac{1.2.50.51}{2^2.50^2}=\frac{51}{100}\)

  

Aphrodite
9 tháng 10 2017 lúc 19:55

đoạn thứ 3 bạn làm sao chuyển về như thế được Vimo Asdred?

mimi
7 tháng 3 2018 lúc 21:08

51/100

Đỗ Bảo Ngọc
Xem chi tiết
Trần Phạm Thanh Huy
22 tháng 3 2016 lúc 10:15

=100000000000000000000000000000

Lê Ánh Huyền
Xem chi tiết
zZz_Nhok lạnh lùng_zZz
17 tháng 8 2016 lúc 23:07

B = 3/4 + 8/9 + 15/16 + .... + 2499/2500

B = (1 - 1/4) + (1 - 1/9) + (1 - 1/16) + ... + (1 - 1/2500)

B = (1 - 1/22) + (1 - 1/32) + (1 - 1/42) + ... + (1 - 1/502)

B = (1 + 1 + 1 + ... + 1) - (1/22 + 1/32 + 1/42 + ...+ 1/502)

                49 số 1

B = 49 - (1/22 + 1/32 + 1/42 + ... + 1/502)

=> B < 49 (1)

B > 49 - (1/1×2 + 1/2×3 + 1/3×4 + ... + 1/49×50)

B > 49 - (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50)

B > 49 - (1 - 1/50)

B > 49 - 1 + 1/50

B > 48 + 1/50 > 48 (2)

Từ (1) và (2) => 48 < B < 49

=> B không phải là số nguyên ( đpcm)

zZz_Nhok lạnh lùng_zZz
17 tháng 8 2016 lúc 22:59

B = 3/4 + 8/9+ 15/16 + ... + 2499/2500

B = (1 - 1/4) + (1 - 1/9) + (1 - 1/16) + ... + (1 - 1/2500)

B = (1 - 1/22) + (1 - 1/32) + (1 - 1/42) + ... + (1 - 1/502)

B = (1 + 1 + 1 + ... + 1) - (1/22 + 1/32 + 1/42 + .... + 1/502)

              49 số 1

=> B = 49 - (1/22 + 1/32 + 1/42 + ... + 1/502)

=> B < 49 (1)

B > 49 - (1/1×2 + 1/2×3 + 1/3×4 + ... + 1/49×50)

B > 49 - (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50)

B > 49 - (1 - 1/50)

B > 49 - 1 + 1/50

B > 48 + 1/50 > 48 (2)

Từ (1) và (2) => 48 < M < 49

=> M không phải số nguyên ( đpcm)

zZz_Nhok lạnh lùng_zZz
17 tháng 8 2016 lúc 23:01

A lộn, B không phải số nguyên nha

Capri Shiro
Xem chi tiết
Tạ Kim Bảo Hoàng
9 tháng 4 2017 lúc 21:37

ko ngờ đấy mày lại ko được giải khi thi MYTS
 

Nguyễn Ngọc Bảo Nam
11 tháng 4 2017 lúc 19:56

MYTS  là j ạ

Capri Shiro
12 tháng 4 2017 lúc 19:09

ko jup thì thôi đăng làm j 

Nguyễn Tiến Đạt
Xem chi tiết
Phùng Minh Quân
8 tháng 3 2018 lúc 7:36

Bạn tham khảo nhé 

Ta có : 

\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\)

\(B=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+\frac{5^2-1}{5^2}+...+\frac{50^2-1}{50^2}\)

\(B=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+\left(1-\frac{1}{5^2}\right)+...+\left(1-\frac{1}{50^2}\right)\)

\(B=\left(1+1+1+1+...+1\right)-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-\frac{1}{5^2}-...-\frac{1}{50^2}\)

\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)

\(A< 1-\frac{1}{50}\)

\(A< \frac{49}{50}\)\(\left(1\right)\)

Lại có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{50}-\frac{1}{51}\)

\(A>\frac{1}{2}-\frac{1}{51}=\frac{49}{102}\)\(\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{49}{102}< A< \frac{49}{50}\)

\(\Leftrightarrow\)\(49-\frac{49}{102}< 49-A< 49-\frac{49}{50}\)

\(\Leftrightarrow\)\(\frac{4949}{102}< B< \frac{2401}{50}\)

\(\Rightarrow\)\(B\notinℤ\)

Vậy B không là số nguyên 

Team 7C
4 tháng 2 2019 lúc 12:03

đúng ko zậy 

Đinh Diệu Châu
9 tháng 5 2020 lúc 20:08

bạn ấy làm đúng rùi đó

Khách vãng lai đã xóa
vuong hien duc
Xem chi tiết
Chỉ Có Em
Xem chi tiết
ρɧươηɠ αηɧ
Xem chi tiết