tính
2/5x5/6x9/10x.....x99/100
3/5x5/7x7/9x...x99/100=
3/5x5/7x7/9x...x99/100=
Cho: A = 1/2x3/4x5/6x.......x99/100
B = 2/3x4/5x5/6x7/8x....100/101
a/ CM A< B
b/CM : A<1
a) Ta có:
(n-1)/n < n/(n+1)
vì (n-1).(n+1)=n2-1 < n2
=>
1/2 < 2/3
3/4 < 4/5
....
99/100 < 100/101
Vậy A < B
b). Ta lại có:
A.B = 1/2 . 2/3 . 3/4 . 4/5 .... . 99/100 . 100/101 = 1/100
Mà A<B => A.A<A.B=1/100
=> A2 < 1/100
=> A < 1/10<1
1)tính
2^100-(1+2+2^2+2^3+....+2^100)
Đặt \(A=1+2+2^2+2^3+...+2^{100}\\ 2A=2+2^2+2^3+2^4+...+2^{101}\\ 2A-A=2+2^2+2^3+2^4+...+2^{101}-1-2-2^2-2^3-...-2^{100}\\ A=2^{101}-1\)
\(\Rightarrow2^{100}-\left(2^{100}-1\right)=2^{100}-2^{101}+1\)
) Cho đa thức :
P(x) = x99 – 100.x98 + 100.x97 – 100.x96 + …+ 100.x – 1
Tính P(99) ?
1x2+2x3+.........x99+100
#)Giải :
Đặt \(A=1.2+2.3+3.4+...+99.100\)
\(3A=1.2.3+2.3.3+3.4.3+...+49.50.3\)
\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)\)
\(3A=0.1.2-1.2.3+1.2.3-2.3.4+2.3.4-3.4.5+...+48.49.50-49.50.51\)
\(3A=49.50.51=124950\)
\(\Leftrightarrow A=\frac{124950}{3}=41650\)
Mình sửa lại đề vì sai : 1 x 2 + 2 x 3 + ... + 99 x 100
Đặt A = 1 x 2 + 2 x 3 + ... + 99 x 100
=> 3 x A = 3 x (1 x 2 + 2 x 3 + ... + 99 x 100)
=> 3 x A = 1 x 2 x 3 + 2 x 3 x 3 + ... + 99 x 100 x 3
=> 3 x A = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ... + 99 x 100 x (101 - 98)
=> 3 x A = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + ... + 99 x 100 x 101 - 98 x 99 x 100
=> 3 x A = 99 x 100 x 101
=> 3 x A = 999 900
=> A = 999 900 : 3
=> A = 333 300
Vậy 1 x 2 + 2 x 3 + ... + 99 x 100 = 333 300
A = 1.2 + 2.3 + 3.4 + ... + 99.100
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
A = 99.100.101 : 3 = 333300
chứng minh rằng M= 1/2x3/4x5/6x...x99/100
chứng minh rằng M= 1/2x3/4x5/6x...x99/100
Tính tổng
1/1x1/2x1/3x1/4x...x99/100