Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2021 lúc 22:39

\(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\left(a+1\right)x^2-\left(2a+b\right)x+2b+1}{x-2}\right)\)

Giới hạn hữu hạn khi \(a+1=0\Rightarrow a=-1\)

Khi đó: \(\lim\limits_{x\rightarrow+\infty}\left(\dfrac{\left(2-b\right)x+2b+1}{x-2}\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{2-b+\dfrac{2b+1}{x}}{1-\dfrac{2}{x}}=2-b=-5\)

\(\Rightarrow b=7\)

dung doan
Xem chi tiết
Hoàng Tử Hà
9 tháng 2 2021 lúc 19:18

Da nan roi mang meo lam mat het bai -.-

1/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt[3]{\dfrac{3x^3}{x^3}+\dfrac{1}{x^3}}+\sqrt{\dfrac{2x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}}{-\sqrt[4]{\dfrac{4x^4}{x^4}+\dfrac{2}{x^4}}}=\dfrac{-\sqrt[3]{3}-\sqrt{2}}{\sqrt[4]{4}}\)

2/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{8x^7}{\left(-2x^7\right)}=-\dfrac{8}{2^7}\)

3/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(4x^2-3x+4-4x^2\right)\left(\sqrt{x^2+x+1}+x\right)}{\left(x^2+x+1-x^2\right)\left(\sqrt{4x^2-3x+4}+2x\right)}=\dfrac{-3.2}{2}=-3\)

 

Way Back Home
Xem chi tiết
hằng hồ thị hằng
Xem chi tiết
Nguyễn Công Tỉnh
28 tháng 2 2021 lúc 14:44

\(\lim\limits_{x\rightarrow-2}\dfrac{x^3+2x^2}{\sqrt{x^2+4x+4}}=\lim\limits_{x\rightarrow-2}\dfrac{x^2\left(x+2\right)}{\sqrt{\left(x+2\right)^2}}\)

\(=\lim\limits_{x\rightarrow-2}x^2=\left(-2\right)^2=4\)

p/s: bài này mình chưa học trên lớp nên ko chắc 100% đúng

Nguyễn Việt Lâm
28 tháng 2 2021 lúc 16:49

\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x+1}}{\sqrt{x+\sqrt{x+1}}+\sqrt{x}}=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x}}}{\sqrt{1+\sqrt{\dfrac{1}{x}+\dfrac{1}{x^2}}}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)

Câu c số 1 trong hay ngoài căn nhỉ?

Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2023 lúc 21:04

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+x+2}}{x-1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{1+\dfrac{1}{x}+\dfrac{2}{x^2}}}{1-\dfrac{1}{x}}=\dfrac{\sqrt{1+0+0}}{1-0}\)

\(=\dfrac{1}{1}\)

=1

b: \(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2-x}+2x\right)\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2-x-4x^2}{\sqrt{4x^2-x}-2x}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-x}{\sqrt{x^2\left(4-\dfrac{1}{x}\right)}-2x}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{-x}{-x\sqrt{4-\dfrac{1}{x}}-2x}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{1}{\sqrt{4-\dfrac{1}{x}}+2}=\dfrac{1}{\sqrt{4}+2}=\dfrac{1}{2+2}=\dfrac{1}{4}\)

Trần Hà Linh
Xem chi tiết
Akai Haruma
14 tháng 5 2021 lúc 0:30

Lời giải:

a) \(\lim\limits_{x\to -\infty}\frac{x+3}{3x-1}=\lim\limits_{x\to -\infty}\frac{1+\frac{3}{x}}{3-\frac{1}{x}}=\frac{1}{3}\)

b) 

\(\lim\limits_{x\to +\infty}\frac{(\sqrt{x^2+1}+x)^n-(\sqrt{x^2+1}-x)^n}{x}=\lim\limits_{x\to +\infty} 2[(\sqrt{x^2+1}+x)^{n-1}+(\sqrt{x^2+1}+x)^{n-1}(\sqrt{x^2+1}-x)+....+(\sqrt{x^2+1}-x)^{n-1}]\)

\(=+\infty\)

ánh tuyết nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 2 2023 lúc 14:51

a: \(\lim\limits_{x->0^-^-}\dfrac{-2x+x}{x\left(x-1\right)}=lim_{x->0^-}\left(\dfrac{-x}{x\left(x-1\right)}\right)\)

\(=lim_{x->0^-}\left(\dfrac{-1}{x-1}\right)=\dfrac{-1}{0-1}=\dfrac{-1}{-1}=1\)

b: \(=lim_{x->-\infty}\left(\dfrac{x^2-x-x^2+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)

\(=lim_{x->-\infty}\left(\dfrac{-x+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)

\(=lim_{x->-\infty}\left(\dfrac{-1+\dfrac{1}{x}}{-\sqrt{1-\dfrac{1}{x^2}}-\sqrt{1-\dfrac{1}{x^2}}}\right)=\dfrac{-1}{-2}=\dfrac{1}{2}\)

 

Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 12 2023 lúc 22:58

a: \(\lim\limits_{x\rightarrow+\infty}\left[x\left(\sqrt{x^2+2}-x\right)\right]\)
\(=\lim\limits_{x\rightarrow+\infty}\left[x\cdot\dfrac{x^2+2-x^2}{\sqrt{x^2+2}+x}\right]\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2x}{\sqrt{x^2+2}+x}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2}{\sqrt{1+\dfrac{2}{x^2}}+1}=\dfrac{2}{1+1}=\dfrac{2}{2}=1\)

b: \(\lim\limits_{x\rightarrow-\infty}\dfrac{3x^2-4x+6}{x-2}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{x^2\left(3-\dfrac{4}{x}+\dfrac{6}{x^2}\right)}{x\left(1-\dfrac{2}{x}\right)}\)

\(=\lim\limits_{x\rightarrow-\infty}\left[x\cdot\dfrac{3-\dfrac{4}{x}+\dfrac{6}{x^2}}{1-\dfrac{2}{x}}\right]\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\infty}x=-\infty\\\lim\limits_{x\rightarrow-\infty}\dfrac{3-\dfrac{4}{x}+\dfrac{6}{x^2}}{1-\dfrac{2}{x}}=\dfrac{3-0+0}{1-0}=\dfrac{3}{1}=3>0\end{matrix}\right.\)

Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 1 2021 lúc 20:17

\(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(1-\dfrac{1}{x}\right)^2\left(2+\dfrac{3}{x^2}\right)}{\dfrac{4}{x^4}-1}=\dfrac{2}{-1}=-2\)