(1/2)*4 +(1/4)*6+..+1/(2x-2)*2x=11/48 (x thuộc N ,x>=12)
Tìm x sao cho x thuộc tập hợp số nguyên:
1) x - 43 = (35 - x) - 48
2) 305 - x + 14 = 48 + (x + 23)
3) - (x - 6 + 85) = (x + 51) - 54
4) - (35 - x - 37 - x) = 33 - x
5) 13 - | x | = | -4 |
6) | x | - 3 + 6 = 16
7) 35 - | 2x - 1 | = 14
8) | 3x - 2 | + 5 = 9 - x
9) x - ( -25 + 7 ) > 12 - ( 15 - 14 )
10) | 17 + ( x - 15 ) | < 4
11) x2 - 5x = 0
12) | x-9 | . (-8) = -16
13) | 4 - 5x = 24 với x < hoặc = 0
14) x . ( x - 2 ) > 0
15) x . ( x - 2 ) < 0
16) (x-1) . (y+1) = 5
17) x . ( y +2 ) = -8
18) xy - 2x - 2y = 0
19) 2x - 5 chia hết cho x - 1
1) x - 43 = (35 - x) - 48
=> x + x = 35 - 48 + 43
=> x + x = 30
=> x = 30 : 2
=> x = 15
2) 305 - x + 14 = 48 + (x + 23)
=> 305 - x + 14 = 48 + x + 23
=> -x - x = 48 + 23 - 14 - 305
=> -x - x = -248
=> -x = -248 : 2
=> -x = -124
=> x = 124
3) - (x - 6 + 85) = (x + 51) - 54
=> -x + 6 - 85 = x + 51 - 54
=> -x - x = 51 - 54 + 85 - 6
=> -x - x = 76
=> -x = 76 : 2
=> -x = 38
=> x = -38
4) - (35 - x - 37 - x) = 33 - x
=> -35 + x + 37 + x = 33 - x
=> x + x + x = 33 + 35 - 37
=> x + x + x = 31
=> x = 31 : 3
=> x \(=\dfrac{31}{3}\)
Vì x \(\in\) Z nên không có giá trị x nào thỏa mãn trong câu này.
5) 13 - | x | = | -4 |
=> 13 - |x| = 4
=> |x| = 13 - 4
=> |x| = 9
=> \(\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
6) | x | - 3 + 6 = 16
=> |x| = 16 - 6 + 3
=> |x| = 13
=> \(\left[{}\begin{matrix}x=13\\x=-13\end{matrix}\right.\)
7) 35 - | 2x - 1 | = 14
=> |2x - 1| = 35 - 14
=> |2x - 1| = 21
=> \(\left[{}\begin{matrix}2x-1=21\\2x-1=-21\end{matrix}\right.=>\left[{}\begin{matrix}2x=21+1\\2x=-21+1\end{matrix}\right.=>\left[{}\begin{matrix}2x=22\\2x=-20\end{matrix}\right.=>\left[{}\begin{matrix}x=22:2\\x=-20:2\end{matrix}\right.=>\left[{}\begin{matrix}x=11\\x=-10\end{matrix}\right.\)
8) | 3x - 2 | + 5 = 9 - x
=> |3x - 2| = 9 - 5 - x
=> |3x - 2| = 4 - x
=> \(\left[{}\begin{matrix}3x-2=4-x\\3x-2=x-4\end{matrix}\right.=>\left[{}\begin{matrix}3x+x=4+2\\3x-x=-4+2\end{matrix}\right.=>\left[{}\begin{matrix}4x=6\\2x=-2\end{matrix}\right.=>\left[{}\begin{matrix}x=6:4\\x=-2:2\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{6}{4}\\x=-1\end{matrix}\right.\)
Vì x \(\in\) Z nên x = -1.
9) x - ( -25 + 7 ) > 12 - ( 15 - 14 )
=> x - (-18) > 12 - 1
=> x + 18 > 11
=> x > 11 - 18
=> x > -7
10) | 17 + ( x - 15 ) | < 4
=> \(\left[{}\begin{matrix}17+\left(x-15\right)< 4\\17+\left(x-15\right)< -4\end{matrix}\right.=>\left[{}\begin{matrix}x-15< 4-17\\x-15< -4-17\end{matrix}\right.=>\left[{}\begin{matrix}x-15< -15\\x-15< -21\end{matrix}\right.=>\left[{}\begin{matrix}x< -15+15\\x< -21+15\end{matrix}\right.=>\left[{}\begin{matrix}x< 0\\x< -6\end{matrix}\right.=>x< -6\)
11) x2 - 5x = 0
=> x . (2 - 5) = 0
=> x . (-3) = 0
=> x = 0 : (-3)
=> x = 0
12) | x-9 | . (-8) = -16
=> |x - 9| = (-16) : (-8)
=> |x - 9| = 3
=> \(\left[{}\begin{matrix}x-9=3\\x-9=-3\end{matrix}\right.=>\left[{}\begin{matrix}x=3+9\\x=-3+9\end{matrix}\right.=>\left[{}\begin{matrix}x=12\\x=6\end{matrix}\right.\)
13) | 4 - 5x | = 24 với x < hoặc = 0
=> \(\left[{}\begin{matrix}4-5x=24\\4-5x=-24\end{matrix}\right.=>\left[{}\begin{matrix}5x=4-24\\5x=4-\left(-24\right)\end{matrix}\right.=>\left[{}\begin{matrix}5x=-20\\5x=28\end{matrix}\right.=>\left[{}\begin{matrix}x=-20:5\\x=28:5\end{matrix}\right.=>\left[{}\begin{matrix}x=-4\\x=\dfrac{28}{5}\end{matrix}\right.\)
Vì x \(\le\) 0 nên x = -4
14) x . ( x - 2 ) > 0
=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-2< 0\end{matrix}\right.\end{matrix}\right.=>\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 2\end{matrix}\right.\end{matrix}\right.=>\left[{}\begin{matrix}x>2\\x< 2\end{matrix}\right.\)
15) x . ( x - 2 ) < 0
=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x-2< 0\end{matrix}\right.\end{matrix}\right.=>\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x< 2\end{matrix}\right.\end{matrix}\right.=>\left[{}\begin{matrix}2>x< 0\left(loại\right)\\0< x< 2\left(chọn\right)\end{matrix}\right.=>0< x< 2\)
16) (x-1) . (y+1) = 5
=> \(\left[{}\begin{matrix}x-1=5\\y+1=1\end{matrix}\right.=>\left[{}\begin{matrix}x=5+1\\y=1-1\end{matrix}\right.=>\left[{}\begin{matrix}x=6\\y=0\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x-1=1\\y+1=5\end{matrix}\right.=>\left[{}\begin{matrix}x=1+1\\y=5-1\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x-1=-1\\y+1=-5\end{matrix}\right.=>\left[{}\begin{matrix}x=-1+1\\y=-5-1\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\y=-6\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x-1=-5\\y+1=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-5+1\\y=-1-1\end{matrix}\right.=>\left[{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\)
17) x . ( y +2 ) = -8
=> \(\left[{}\begin{matrix}x=1\\y+2=-8\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\y=-8-2\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\y=-10\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x=-1\\y+2=8\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\y=8-2\end{matrix}\right.=>\left[{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x=-8\\y+2=1\end{matrix}\right.=>\left[{}\begin{matrix}x=-8\\y=1-2\end{matrix}\right.=>\left[{}\begin{matrix}x=-8\\y=-1\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x=8\\y+2=-1\end{matrix}\right.=>\left[{}\begin{matrix}x=8\\y=-1-2\end{matrix}\right.=>\left[{}\begin{matrix}x=8\\y=-3\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x=2\\y+2=-4\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\y=-4-2\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\y=-6\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x=-2\\y+2=4\end{matrix}\right.=>\left[{}\begin{matrix}x=-2\\y=4-2\end{matrix}\right.=>\left[{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x=4\\y+2=-4\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\y=-4-2\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\y=-6\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}x=-4\\y+2=2\end{matrix}\right.=>\left[{}\begin{matrix}x=-4\\y=2-2\end{matrix}\right.=>\left[{}\begin{matrix}x=-4\\y=0\end{matrix}\right.\)
18) xy - 2x - 2y = 0
=> x . (y - 2) - 2y = 0
=> x . (y - 2) - 2y - 4 = -4
=> x . (y - 2) - 2 . (y - 2) = -4
=> (y - 2) . (x - 2) = -4
=> \(\left[{}\begin{matrix}y-2=1\\x-2=-4\end{matrix}\right.=>\left[{}\begin{matrix}y=1+2\\x=-4+2\end{matrix}\right.=>\left[{}\begin{matrix}y=3\\x=-2\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}y-2=-1\\x-2=4\end{matrix}\right.=>\left[{}\begin{matrix}y=-1+2\\x=4+2\end{matrix}\right.=>\left[{}\begin{matrix}y=1\\x=6\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}y-2=2\\x-2=-2\end{matrix}\right.=>\left[{}\begin{matrix}y=2+2\\x=-2+2\end{matrix}\right.=>\left[{}\begin{matrix}y=4\\x=0\end{matrix}\right.\)
hoặc
=> \(\left[{}\begin{matrix}y-2=-2\\x-2=2\end{matrix}\right.=>\left[{}\begin{matrix}y=-2+2\\x=2+2\end{matrix}\right.=>\left[{}\begin{matrix}y=0\\x=4\end{matrix}\right.\)
19) 2x - 5 \(⋮\) x - 1
=> (2x - 2) - (5 - 2) \(⋮\) x - 1
=> 2(x - 1) - 3 \(⋮\) x - 1
Vì 2(x - 1) \(⋮\) x - 1 nên 3 \(⋮\) x - 1
=> x - 1 \(\in\) Ư(3) = {-3; -1; 1; 3}
=> x \(\in\) {-2; 0; 2; 4}
P/s: Mình không bảo đảm là đúng hết nên câu nào sai thì bạn thông cảm nha~
1) 2x – (3 – 5x) = 4( x +3)
2) 5(2x-3) - 4(5x-7) =19 - 2(x+11)
3) 5x - 4(6-x)(x + 3) = (4-2x)(3-2x) + 2
4) (x - 1)3 - (3x + 2)(-12) = (x2 + 1)(x - 2) - x2
5) (3x -1)2 - (x +3)(2x-1) = 7(x + 1)(x -2) -3x
mn giúp mình vs
1) 2x – (3 – 5x) = 4( x +3)
<=>2x-3+5x=4x+12
<=>2x-3+5x-4x-12=0
<=>3x-15=0
<=>x=5
2) 5(2x-3) - 4(5x-7) =19 - 2(x+11)
<=>10x-15-20x+28=19-2x-22
<=>10x-15-20x+28-19+2x+22=0
<=>-8x+16=0
<=>x=2
tham khảo
1) 2x – (3 – 5x) = 4( x +3)
<=>2x-3+5x=4x+12
<=>2x-3+5x-4x-12=0
<=>3x-15=0
<=>x=5
2) 5(2x-3) - 4(5x-7) =19 - 2(x+11)
<=>10x-15-20x+28=19-2x-22
<=>10x-15-20x+28-19+2x+22=0
<=>-8x+16=0
<=>x=2
Tìm x biết :
a, 4.(18 - 5x) - 12.(3x - 7) = 15.(2x - 16) - 6(x + 14)
b, 5.(3x + 5) - 4.(2x - 3) = 5x + 3.(2x + 12) + 1
c, 2.(5x - 8) - 3.(4x - 5) = 4.(3x - 4) + 11
d, (3x + 2)(2x + 9) - (x + 2)(6x + 1) = (x + 1) - (x - 6)
e, (8x - 3)(3x + 2) - (4x + 7)(x + 4)= (2x + 1)(5x - 1) - 33
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
b, 5(3x + 5) - 4(2x - 3) = 5x + 3(2x + 12) + 1
=> 15x + 25 - 8x + 12 = 5x + 6x + 36 + 1
=> (15x - 8x) + (25 + 12) = 11x + 37
=> 7x + 37 = 11x + 37
=> 11x - 7x = 0
=> x = 0
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
tìm x , biết
a) 17/6- x( x-7/6)= 7/4
b) 3/35 - ( 3/5-x)= 2/7
tìm x thuộc Z , biết
3/4-5/6 < x/12 < 1 -( 2/3-1/4)
tìm x biết
a ) 2x-3=x + 1/2
b) 4x- ( x+ 1/2) = 2x - ( 1/2 - 5 )
Bài 1:
a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)
\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)
\(\Leftrightarrow-12x^2+14x+13=0\)
\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)
b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)
\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)
hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
Bài 3:
a) Ta có: \(2x-3=x+\dfrac{1}{2}\)
\(\Leftrightarrow2x-x=\dfrac{1}{2}+3\)
\(\Leftrightarrow x=\dfrac{7}{2}\)
b) Ta có: \(4x-\left(x+\dfrac{1}{2}\right)=2x-\left(\dfrac{1}{2}-5\right)\)
\(\Leftrightarrow3x-\dfrac{1}{2}-2x+\dfrac{1}{2}-5=0\)
\(\Leftrightarrow x=5\)
Câu 1. Giải các phườn trình sau:
a, 3x+6=0
b, 2x-10=0
c, 3x-7=11
d, 3x-9=0
e, 3x(2-x) =15(x-2)
f, (x+5)(x+4)=0
g, x(x+4)=0
h, (2x -4)(x-2)=0
i, (x+1/5)(2x-3)=0
k, x²-4x=0
m, 4x²-1=0
n, x²-6x+9=0
l, (3x-5)²-(x+4)²=0
o, 7x(x+2)-5(x+2)=0
p, 3x(2x-5)-4x+10=0
q, (2-2x)-x²+1=0
r, x(1-3x)=5(1-3x)
s, 2x-3/4+x+1/6=3
t, x-3/4-2x+1/3=x/6
u, x+1/13+x+2/12=x+3/11+x+4/10
v, 2x+1/15+2x+2/14=2x+3/13+2x+4/12
Giúp e nha mn. E cảm ơn trc ạ!
e, 3x(2-x) =15(x-2)
\(\Leftrightarrow3x\left(2-x\right)-15\left(x-2\right)=0\)
\(\Leftrightarrow-3x\left(x-2\right)-15\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(-3x-15\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\-3x-15=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
Vậy..
f, (x+5)(x+4)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)
Vậy..
g, x(x+4)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
,h, (2x -4)(x-2)=0
\(\Leftrightarrow2\left(x-2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2-1\right)=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
i, (x+1/5)(2x-3)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{5}=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{5}\\x=\frac{3}{2}\end{matrix}\right.\)
k, x²-4x=0
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
m, 4x²-1=0
\(\Leftrightarrow\left(2x\right)^2-1^2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\2x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{2}\end{matrix}\right.\)
n, x²-6x+9=0
\(\Leftrightarrow x^2-2.x.3+3^2=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\)
<=> x=3
l, (3x-5)²-(x+4)²=0
\(\Leftrightarrow\left(3x-5-x-4\right)\left(3x-5+x+4\right)=0\)
\(\Leftrightarrow\left(2x-9\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-9=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=9\\4x=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{9}{2}\\x=\frac{1}{4}\end{matrix}\right.\)
Vậy ..
o, 7x(x+2)-5(x+2)=0
\(\Leftrightarrow\left(x+2\right)\left(7x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\7x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\7x=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=\frac{5}{7}\end{matrix}\right.\)
Vậy....
p, 3x(2x-5)-4x+10=0
\(\Leftrightarrow3x\left(2x-5\right)-\left(4x-10\right)=0\)
\(\Leftrightarrow3x\left(2x-5\right)-2\left(2x-5\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy...
q, (2-2x)-x²+1=0
\(\Leftrightarrow2\left(1-x\right)-\left(x^2-1^2\right)=0\)
\(\Leftrightarrow2\left(1-x\right)-\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow2\left(1-x\right)+\left(1-x\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(2+x+1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy ....
r, x(1-3x)=5(1-3x)
\(\Leftrightarrow x\left(1-3x\right)-5\left(1-3x\right)=0\)
\(\Leftrightarrow\left(1-3x\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-3x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x=-1\\x=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\x=5\end{matrix}\right.\)
s, 2x-3/4+x+1/6=3
\(\Leftrightarrow x-\frac{7}{12}=3\Leftrightarrow x=3+\frac{7}{12}=\frac{43}{12}\)
r, x(1-3x)=5(1-3x)
➜x(1-3x)-5(1-3x)=0
➜(x-5)(1-3x)=0
➜\(\left[{}\begin{matrix}x-5=0\\1-3x=0\end{matrix}\right.\text{➜}\left[{}\begin{matrix}x=5\\x=\frac{1}{3}\end{matrix}\right.\)
Mk lười lắm mai nha!!!~~~~~~~~~~~~
Làm dần:
a, 3x+6=0
➜3x=-6
➜x=2
b, 2x-10=0
➜2x=10
➜x=5
c, 3x-7=11
➜3x=11+7
➜3x=18
➜x=6
d, 3x-9=0
➜3x=9
➜x=3
a)-5.(-x+7)-3.(-x-5)=-4.(12-x)+48
b) (-x-7)-5.(-x-3)=12.(3-x)
c)-2.(15-3x)-4.(7x+8)=-5-9.(-2x+1)
d) (-3x-7) - 4.(-2x-11)=7.(4x+10)+9
\(a,-5.\left(-x+7\right)-3.\left(-x-5\right)=-4.\left(12-x\right)+48\)
\(5x-35-3x+15=-48+4x+48\)
\(2x-10=4x\)
\(2x-4x=10\)
\(-2x=10\)
\(x=-5\)
\(b,\left(-x-7\right)-5.\left(-x-3\right)=12.\left(3-x\right)\)
\(-x-7+5x+15=36-12x\)
\(4x+8=36-12x\)
\(4x+12x=36-8\)
\(16x=28\)
\(x=1,75\)
các câu còn lại tương tự nha
tìm x thuộc N,biết
a) 7 - x thuộc Ư(82) 0<7-x<hoặc=24
b) x+1 chia hết x-2
c)2x-1 thuộc B(12) và 12 <hoặc = 2x-1<hoặc = 48
1) n+5 chia hết cho n+3
c) 2n - 1 chia hết 3n + 6
b: \(x+1⋮x-2\)
\(\Leftrightarrow x-2+3⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
c: \(\Leftrightarrow2x-1\in\left\{12;24;36;48\right\}\)
\(\Leftrightarrow x\in\left\{\dfrac{13}{2};\dfrac{25}{2};\dfrac{37}{2};\dfrac{49}{2}\right\}\)
d: \(\Leftrightarrow n+3+2⋮n+3\)
\(\Leftrightarrow n+3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{-2;-4;-1;-5\right\}\)
e: \(2n-1⋮3n+6\)
\(\Leftrightarrow6n-3⋮3n+6\)
\(\Leftrightarrow6n+12-15⋮3n+6\)
\(\Leftrightarrow3n+6\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
hay \(n\in\left\{-\dfrac{5}{3};-\dfrac{7}{3};-1;-3;-\dfrac{1}{3};-\dfrac{11}{3};3;-7\right\}\)
tìm x thuộc N,biết
a) 7 - x thuộc Ư(82) 0<7-x<hoặc=24
b) x+1 chia hết x-2
c)2x-1 thuộc B(12) và 12 <hoặc = 2x-1<hoặc = 48
1) n+5 chia hết cho n+3
c) 2n - 1 chia hết 3n + 6