chứng minh răng biểu thức p= x^8-x^5+x^2-x+1 nhận giá trị dương với mọi x
a.chứng minh rằng biểu thức P=5x(2-x)-(x+1)(x+9) luôn nhận giá trị âm với mọi giá trị của biến x.
b. chứng minh rằng biểu thức Q=3x2+x(x-4y)-2x(6-2y)+12x+1 luôn nhận giá trị dương với mọi giá trị của biến x và y
\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)
\(=10x-5x^2-\left(x^2+x+9x+9\right)\)
\(=10x-5x^2-x^2-x-9x-9\)
\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)
\(=-6x^2-9\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow-6x^2\le0\forall x\)
\(\Rightarrow-6x^2-9\le-9< 0\forall x\)
hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).
\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)
\(=3x^2+x^2-4xy-12x+4xy+12x+1\)
\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)
\(=4x^2+1\)
Ta thấy: \(x^2\ge0\forall x\)
\(\Rightarrow4x^2\ge0\forall x\)
\(\Rightarrow4x^2+1\ge1>0\forall x\)
hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).
#\(Toru\)
Chứng minh rằng các biểu thức sau luôn nhận giá trị dương với mọi giá trị của biến.
a) x2 - 5x +10
b) 2x2 + 8x +15
c) (x-1).(x-2) + 5
d) (x+5).(x-3) + 20
Mọi người giúp mình với :<
a: \(x^2-5x+10\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)
b: \(2x^2+8x+15\)
\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x+2\right)^2+7>0\forall x\)
Chứng minh các biểu thức sau nhận giá trị dương với mọi giá trị của biến:
a) A = x^2 – x + 1
b) B = (x – 2)(x – 4) + 3
c) C = 2x^2 – 4xy + 4y^2 + 2x + 5
a) \(A=x^2-x+1=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
b) \(B=\left(x-2\right)\left(x-4\right)+3=x^2-6x+8+3=\left(x-3\right)^2+2\ge2>0\)
c) \(C=2x^2-4xy+4y^2+2x+5=\left(x-2y\right)^2+\left(x+1\right)^2+4\ge4>0\)
Bài 2: Chứng minh các biểu thức sau nhận giá trị dương với mọi giá trị của biến:
a) A = x^2 – x + 1
b) B = (x – 2)(x – 4) + 3
c) C = 2x^2 – 4xy + 4y^2 + 2x + 5
a: =x^2-x+1/4+3/4
=(x-1/2)^2+3/4>=3/4>0 với mọi x
b: B=x^2-6x+8+3
=x^2-6x+11
=x^2-6x+9+2
=(x-3)^2+2>=2>0 với mọi x
c: =x^2-4xy+4y^2+x^2+2x+1+4
=(x-2y)^2+(x+1)^2+4>=4>0 với mọi x,y
Cho biểu thức: B = (2x+5)2 – (3-x)(3+x) + 14
a) Thu gọn biểu thức B
b) Chứng minh giá trị của biểu thức B luôn luôn dương với mọi giá trị của biến x.
Cho biểu thức: B = (2x+5)2 – (3-x)(3+x) + 14
a) Thu gọn biểu thức B
b) Chứng minh giá trị của biểu thức B luôn luôn dương với mọi giá trị của biến x.
\(a,B=4x^2+20x+25-9+x^2+14=5x^2+20x+30\\ b,B=5\left(x^2+4x+4\right)+10\\ B=5\left(x+2\right)^2+10\ge10>0,\forall x\)
Do đó B luôn dương với mọi x
Bài 8: Chứng minh biểu thức sau luôn nhận giá trị dương với mọi giá trị của x:
a)\(x^2-8x+19\)
b)\(3x^2-6x+5\)
c)\(x^2+y^2-8x+4y+27\)
d)\(x^2-x+1\)
a)\(x^2-8x+19=x^2-2.x.4+16+3=\left(x+4\right)^2+3\)
Vì \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2+3\ge3\Rightarrow x^2-8x+19\ge3\)
Vậy x2-8x+19 luôn nhận giá trị dương
mấy câu kia làm tương tự
chứng minh biểu thức : x^4 -x+1/2 có giá trị dương với mọi giá trị bất kì của x
a) Chứng minh rằng biểu thức \(P = 5{\rm{x}}\left( {2 - x} \right) - \left( {x + 1} \right)\left( {x + 9} \right)\) luôn nhận giá trị âm với mọi giá trị của biến x.
b) Chứng minh rằng biểu thức \(Q = 3{{\rm{x}}^2} + x\left( {x - 4y} \right) - 2{\rm{x}}\left( {6 - 2y} \right) + 12{\rm{x}} + 1\) luôn nhận giá trị dương với mọi giá trị của biến x và y
a) Ta có:
\(\begin{array}{l}P = 5{\rm{x}}\left( {2 - x} \right) - \left( {x + 1} \right)\left( {x + 9} \right)\\P = 5{\rm{x}}.2 - 5{\rm{x}}.x - x.x - x.9 - 1.x - 1.9\\P = 10{\rm{x}} - 5{{\rm{x}}^2} - {x^2} - 9{\rm{x}} - x - 9\\P = - \left( {6{{\rm{x}}^2} + 9} \right)\end{array}\)
Vì \(6{{\rm{x}}^2} \ge 0,\forall x \in \mathbb{R}\) nên \(6{{\rm{x}}^2} + 9 \ge 9,\forall x \in \mathbb{R}\) suy ra \( - \left( {6{{\rm{x}}^2} + 9} \right) \le - 9 < 0,\forall x \in \mathbb{R}\)
Vậy P luôn nhận giá trị âm với mọi giá trị của biến x.
b) Ta có:
\(\begin{array}{l}Q = 3{{\rm{x}}^2} + x\left( {x - 4y} \right) - 2{\rm{x}}\left( {6 - 2y} \right) + 12{\rm{x}} + 1\\Q = 3{{\rm{x}}^2} + x.x - x.4y - 2{\rm{x}}.6 - 2{\rm{x}}.\left( { - 2y} \right) + 12{\rm{x}} + 1\\Q = 3{{\rm{x}}^2} + {x^2} - 4{\rm{xy}} - 12{\rm{x}} + 4{\rm{xy + 12x + 1}}\\{\rm{Q = 4}}{{\rm{x}}^2} + 1\end{array}\)
Vì \({\rm{4}}{{\rm{x}}^2} \ge 0,\forall x \in \mathbb{R}\) nên \({\rm{4}}{{\rm{x}}^2} + 1 \ge 1 > 0,\forall x \in \mathbb{R}\)
Vậy Q luôn nhận giá trị dương với mọi giá trị của x, y.
1. Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: a) -9*x^2 + 12*x -15 b) -5 – (x-1)*(x+2)
2. Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) x^4 +x^2 +2 b) (x+3)*(x-11) + 2003
3. Tính a^4 +b^4 + c^4 biết a+b+c =0 và a^2 +b^2 +c^2 = 2
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
1/ \(-9x^2+12x-15=\left(-9x^2+2.2.3x-4\right)-11\)
\(=-11-\left(3x-2\right)^2\le-11< 0\)
Câu b và câu 2 tương tự