Cho đơn thức A = 5m(x2.y3)2 ; B = \(\frac{-2}{m}\) x4. y6 trong đó m là hằng số dương
a) Hai đơn thức A và B có đồng dạng không ?
b) Tính hiệu A – B
c) Tính GTNN của hiệu A – B
Cho đơn thức A=2x.(-x2 y3)2
a. thu gọn đơn thức A.
b. xác định phần hệ số, phần biến, bậc của đơn thức A.
c. tìm giá trị của x biết y=1; A=-2.
a. A= 2. (-x)5 . y5
b. Hệ số là 2
Phần biến là (-x)5 . y5
Bậc là 10
c. 2. [-(-2)]5 . 15
= 2. 32 = 64
Cho đơn thức A = x 2 y 3 z . Khẳng định nào sau đây sai?
A. Đơn thức A có bậc là 5
B. Giá trị của A tại x = 1, y = -1, z = 2 là -2
C. Hệ số của đơn thức A là 0
D. Đơn thức A đồng dạng với đơn thức - 3 y 3 x 2 z
Chia đa thức cho đơn thức: ( mình cần gấp, giúp mik vs )
a) {3(x-y)4+2(x-y)3-5(x-y)2} : (y-x)2
b) (x-2y)3 : (x2-4xy+4y2)
c) (x3+y3) : (x+y)
a: \(\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(y-x\right)^2}\)
\(=\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(x-y\right)^2}\)
\(=3\left(x-y\right)^2+2\left(x-y\right)-5\)
b: \(\dfrac{\left(x-2y\right)^3}{x^2-4xy+4y^2}\)
\(=\dfrac{\left(x-2y\right)^3}{\left(x-2y\right)^2}\)
=x-2y
c: \(\dfrac{x^3+y^3}{x+y}\)
\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}\)
\(=x^2-xy+y^2\)
Câu 1 : Cho đơn thức A = ( -2x2 y ) .( -1/2 x2 y3 )2
a, Thu gọn và tìm bậc của đơn thức .
b, Viết đơn thực B đồng dạng với đơn thực M .
Câu 2 : Cho đa thức M = 3x2 y3 + 2x2 y + 3xy2 _ 3x2y3 _ 5xy2 + 4
a, Thu gọn đa thức M . Tính giá trị của M tại x = -1 , y = 2.
b, cho đa thức N = -2x2y + 5xy2 + 2x - 1 . Tính M + N ; M - N .
Giúp mình với ! ngày mai kiểm tra rồi !!!!!!!!!
Tìm hệ số trong đơn thức - 36 a 2 . b 2 . x 2 . y 3 với a, b là hằng số
A. -36
B. - 36 a 2 b 2
C. 36 a 2 b 2
D. - 36 a 2
Đơn thức - 36 a 2 . b 2 . x 2 . y 3 với a, b là hằng số có hệ số là - 36 a 2 . b 2
Chọn đáp án B
Tích của hai đơn thức 1 / 4 x 2 y 3 v à ( - 3 x y ) là:
A. - 4 3 x 3 y 4
B. - 3 4 x 4 y 3
C. 3 4 x 3 y 4
D. - 3 4 x 3 y 4
Chia đa thức cho đơn thức:
a) {3(x-y)4+2(x-y)3-5(x-y)2} : (y-x)2
b) (x-2y)3 : (x2-4xy+4y2)
c) (x3+y3) : (x+y)
a)\(\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(y-x\right)^2}=\dfrac{\left(x-y\right)^2\left[3\left(x-y\right)^2+2\left(x-y\right)-5\right]}{\left(x-y\right)^2}=3x^2-6xy+3y^2+2x-2y-5\)
b) \(\dfrac{\left(x-2y\right)^3}{x^2-4xy+4y^2}=\dfrac{\left(x-2y\right)^3}{\left(x-2y\right)^2}=x-2y\)
c) \(\dfrac{x^3+y^3}{x+y}=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}=x^2-xy+y^2\)
a: \(\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(y-x\right)^2}\)
\(=\dfrac{3\left(x-y\right)^4+2\left(x-y\right)^3-5\left(x-y\right)^2}{\left(x-y\right)^2}\)
\(=3\left(x-y\right)^2+2\left(x-y\right)-5\)
b: \(\dfrac{\left(x-2y\right)^3}{x^2-4xy+4y^2}\)
\(=\dfrac{\left(x-2y\right)^3}{\left(x-2y\right)^2}\)
=x-2y
c: \(\dfrac{x^3+y^3}{x+y}\)
\(=\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x+y}\)
\(=x^2-xy+y^2\)
Khẳng định nào sau đây là sai?
(A) 3x2 y3 và 3x3 y2 là hai đơn thức đồng dạng;
(B) −3x2 y3và 3x2 y3 là hai đơn thức đồng dạng;
(C) (xy)2 và 3x2 y2 là hai đơn thức đồng dạng;
(D) -2(xy)3 và 5x3 y3 là hai đơn thức đồng dạng;
Đáp án đúng là (A) 3x2 y3 và 3x3 y2 là hai đơn thức đồng dạng.
a)Cho x-y=2,xy=1
Tìm giá trị biểu thức A = x2+y2.
b)Cho x+y=1 . Tính giá trị của biểu thức A = x3 + 3xy + y3.
\(a,A=x^2+y^2\\=x^2-2xy+y^2+2xy\\=(x-y)^2+2xy\\=2^2+2\cdot1\\=4+2\\=6\)
\(b,x+y=1\\\Leftrightarrow (x+y)^3=1^3\\\Leftrightarrow x^3+3x^2y+3xy^2+y^3=1\\\Leftrightarrow x^3+3xy(x+y)+y^3=1\\\Leftrightarrow x^3+3xy\cdot1+y^3=1\\\Rightarrow A=1\)
a) Ta có:
\(x-y=2\)
\(\Rightarrow\left(x-y\right)^2=2^2\)
\(\Rightarrow x^2-2xy+y^2=4\)
Mà: \(xy=1\)
\(\Rightarrow\left(x^2+y^2\right)-2\cdot1=4\)
\(\Rightarrow x^2+y^2=4+2\)
\(\Rightarrow x^2+y^2=6\)
b) Ta có:
\(x+y=1\)
\(\Rightarrow\left(x+y\right)^3=1^3\)
\(\Rightarrow x^3+3x^2y+3xy+y^3=1\)
\(\Rightarrow x^3+3xy\left(x+y\right)+y^3=1\)
Mà: x + y = 1
\(\Rightarrow x^3+3xy\cdot1+y^3=1\)
\(\Rightarrow x^3+3xy+y^3=1\)
tìm đa thức B và tính giá trị của đa thức B tại x=1; y=-1/3 biết:
x2-2y2+2/3 x2 y3+B = 2x2+y2+2/3 x2 y3
`x^2-2y^2+2/3x^2y^3+B=2x^2+y^2+2/3x^2y^3`
`=>B=2x^2+y^2+2/3x^2y^3-x^2+2y^2-2/3x^2y^3`
`=>B=(2x^2-x^2)+(y^2+2y^2)+(2/3x^2y^3-2/3x^2y^3)`
`=>B=x^2+3y^2`
Thay `x=1 ; y=[-1]/3` vào `B` có:
`B=1^2+3.([-1]/3)^2=1+3 . 1/9=1+1/3=4/3`
`x^2 - 2y^2 + 2/3x^2y^3 + B = 2x^2 + y^2 + 2/3x^2y^3`
`=> B = 2x^2 + y^2 + 2/3x^2y^3` `- (x^2 - 2y^2 + 2/3x^2y^3)`
`= 2x^2 + y^2 + 2/3x^2y^3 - x^2 + 2y^2 - 2/3x^2y^3`
`= ( 2x^2 - x^2 ) + ( y^2 + 2y^2 ) + ( 2/3x^2y^3 - 2/3x^2y^3 )`
`= x^2 + 3y^2`
Thay `x=1 ; y=-1/3` vào `B` ta có `:`
`B = 1^2 + 3 . ( -1/3 )^2`
`= 1 + 1/3`
`= 4/3`