a
cho f(x) = \(ax^2+bx+c\) ( a ; b ; c ∈Q )
Biết f(0) ; f(1) ; f(2) có giá trị nguyên.
chứng minh rằng 2a , 2b có giá trị nguyên
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
F(x)= ax+b ;a khác 0
biết F(1)= 0 ; F(2)= 4
G(x)= ax^2+bx+c ;a khác 0
biết G(1) = 0; G(-1)= 9 ; G(2)= 5
cho đa thức f(x)= ax^2+bx+ca khác 0
biết f(1)= f(-1)
CM :f(x)= f(-x)
no hiểu gì hết THIS IS HOW I DO NOT KNOW HOW TO APOLOGIZE OFFLINE
Cho a,b,c là các số thực và \(a\ne0\). Chứng minh rằng nếu đa thức \(f\left(x\right)=a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c\) vô nghiệm thì phương trình \(g\left(x\right)=ax^2+bx-c\) có hai nghiệm trái dấu
Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)
TH1: \(a;c\) trái dấu
Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)
Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)
Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.
Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)
\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)
Mà a; c trái dấu nên:
- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)
\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)
\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu
\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)
Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)
cho đa thức f(x)=ax^2+bx+c (a khác 0). CMR: f(x) = f(-x - b/a)
cho m=f(x)=ax^2+bx+c.xac dinh a,b,c biet f(2)=0,f(-2)=0va a-c=3
Có : 0 = f(2) = 4a+2b+c
0 = f(-2) = 4a-2b+c
=> 0 = 4a+2b+c-(4a-2b+c) = 4b
=> b = 0
=> 4a+c = 0
Mà a-c = 3 => c = a-3
=> 0 = 4a+a-3
=> 5a-3=0
=> a=3/5
=> c=-12/5
Vậy ............
Tk mk nha
cho hai đa thức f(x)= ax^2+bx+c và g(x)=cx^2+bx+a . cmr nếu f(x0)=0 thì g(1/x0)=0
1. Phân tích thành x tử
a, xy+1-x-y
b, ax+ay-3x-3y
c,x3-2x2+2x-4
d,x2+ab+ax+bx
e,16-x2+2xy-y2
f,ax2+ax-bx2-bx-a+b
\(a,xy+1-x-y\)
\(=\left(xy-y\right)+\left(1-x\right)\)
\(=y\left(x-1\right)- \left(x-1\right)\)
\(=\left(x-1\right)\left(y-1\right)\)
\(b,ax+ay-3x-3y\)
\(=a\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(a-3\right)\)
\(c,x^3-2x^2+2x-4\)
\(=x^2\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x^2+2\right)\left(x-2\right)\)
\(d,x^2+ab+ax+bx\)
\(=\left(x^2+ax\right)+\left(ab+bx\right)\)
\(=x\left(a+x\right)+b\left(a+x\right)\)
\(=\left(a+x\right)\left(b+x\right)\)
\(e,16-x^2+2xy-y^2\)
\(=4^2-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)
\(f,ax^2+ax-bx^2-bx-a+b\)
\(=\left(ax^2-bx^2\right)+\left(ax-bx\right)-\left(a-b\right)\)
\(=x^2\left(a-b\right)+x\left(a-b\right)-\left(a-b\right)\)
\(=\left(a-b\right)\left(x^2+x-1\right)\)
1. Phân tích thành x tử
a, xy+1-x-y
b, ax+ay-3x-3y
c,x3-2x2+2x-4
d,x2+ab+ax+bx
e,16-x2+2xy-y2
f,ax2+ax-bx2-bx-a+b
y= f(x)=ax^2+bx+c. xác định hệ số a;b;c biết rằng f(0)=5;f(2)=0;f(5)=0
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0+b\cdot0+c=5\\4a+2b+c=0\\25a+5b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=5\\4a+2b=-5\\25a+5b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=5\\a=\dfrac{1}{2}\\b=-\dfrac{7}{2}\end{matrix}\right.\)