Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thu Hà
Xem chi tiết
Nguyễn Ngọc Anh Minh
16 tháng 10 2023 lúc 8:42

\(999993^{1999}=999993^{1996}.999993^3=\)

\(=\left(999993^4\right)^{499}.999993^3\)

\(999993^4\) có tận cùng là 1\(\Rightarrow\left(999993^4\right)^{499}\) có tận cùng là 1

\(999993^3\) có tận cùng là 7

\(\Rightarrow999993^{1999}\) có tận cùng là 7

Ta có

\(555557^{1997}=555557^{1996}.555557=\)

\(=\left(555557^4\right)^{499}.555557\)

\(555557^4\) có tận cùng là 1\(\Rightarrow\left(555557^4\right)^{499}\) có tận cùng là 1

\(555557\) có tận cùng là 7

\(\Rightarrow555557^{1997}\) có tận cùng là 7

\(\Rightarrow A\) có tận cùng là 0 \(\Rightarrow A⋮5\)

Tran Thi Thao Ly
Xem chi tiết
Võ Thị Hồng Duyên
17 tháng 11 2015 lúc 19:36

a, 995 - 984 + 973 - 962 
= (…9 ) - (…6) + (…3) - (…6)
= 0 
Số này có tận cùng bằng 0 nên chia hết cho 2 và 5                                                                                                 tick minh nha

Link Pro
17 tháng 11 2015 lúc 19:32

1d)Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5 
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Ta có: 9999931999 có chữ số tận cùng là 31999 = (34)499. 33 = 81499.27
Ta có: 9999931999=(74)499.7 =2041499.7 có chữ số tận cùng là 7 
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5. 

Nhi Nguyễn
Xem chi tiết
Nguyễn Trung Moi
27 tháng 1 2022 lúc 18:49

quá ez, vì số dư 1 của số 9999931999 - số dư 1 của số 5555571997 = dư 0. Mà dư 0 là không dư nên chia hết cho 2 và 5. Cho mình 1 điểm nhé

Khách vãng lai đã xóa
Ngô Phương Chiển
Xem chi tiết
Lê Hà Phương
4 tháng 12 2015 lúc 12:43

Ta thấy:  9999931999 - 5555571997 có hiệu tận cùng là 2 vậy số trên ko bao giời chia hết cho 5

Ice Wings
4 tháng 12 2015 lúc 12:44

Ta có: A=9999931999-5555571997

=> A=.....9-......7

=> A=.....2

Vậy A có tận cùng = 2

Mà số có tận cùng bằng 2 ko bao giờ chia hết cho 5

xem lại đề

English Study
Xem chi tiết
Lê Song Phương
19 tháng 8 2023 lúc 17:04

 a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.

 b) 

Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)

c) Cách làm tương tự câu b.

Hoàng Thu Hương
Xem chi tiết
Aurora
24 tháng 3 2021 lúc 19:56

Ta có:

A=9999931999−5555571997

A=9999931998.999993−5555571996.555557

A=(9999932)999.999993 − (5555572)998.555557

A=\(\overline{\left(....9\right)}^{999}\) . 999993 - \(\overline{\left(...1\right)}.\text{555557}\)

A=\(\overline{\left(...7\right)}-\overline{\left(...7\right)}\)

A= \(\overline{\left(...0\right)}\)

Vì A có tận cùng là 0 nên \(A⋮5\)

Bùi Trọng Diền
Xem chi tiết
Troemmie
Xem chi tiết
Nguyễn Linh Chi
20 tháng 6 2019 lúc 11:05

Ta có: a, b là các số tự nhiên không chia hết cho 5

=> Chữ số cuối cùng các số a, b  có thể là 1, 2, 3, 4, 6, 7, 8,9

 mà 1^4=1, 2^4=16, 3^4 =81, 4^4=256, 6^41296,...

=> Như vậy chữ số tận cùng các sô a^4 và b^4 là 1 hoặc 6

=> Chữ số tận cùng các số a^4m, b^4m là 1 hoặc 6

=> Chữ số tận cùng các số a^4m -1  và b^4m -1 là 0 hoặc 5 

=> \(\hept{\begin{cases}a^{4m}-1⋮5\\b^{4m}-1⋮5\end{cases}\Rightarrow}\hept{\begin{cases}x\left(a^{4m}-1\right)⋮5\\y\left(b^{4m}-1\right)⋮5\end{cases}}\)

=> \(x\left(a^{4m}-1\right)+y\left(b^{4m}-1\right)⋮5\Rightarrow xa^{4m}+yb^{4m}+\left(x+y\right)⋮5\Rightarrow xa^{4m}+yb^{4m}⋮5\)vì x+y chia hết cho 5

Nguyễn Linh Chi
20 tháng 6 2019 lúc 11:10

Hoặc nếu em đã được học kiến thức đồng dư:

a, b là các số không chia hết cho 5

=> a^4 , b^4 có chữ số tận cùng là 1, 6 

=> a^4m, b^4m có chữ số tận cùng 1, 6

=> \(\hept{\begin{cases}a^{4m}\equiv1\left(mod5\right)\\b^{4m}\equiv1\left(mod5\right)\end{cases}\Leftrightarrow}\hept{\begin{cases}x.a^{4m}\equiv x\left(mod5\right)\\y.b^{4m}\equiv y\left(mod5\right)\end{cases}\Rightarrow x.a^{4m}+y.b^{4m}\equiv x+y\equiv}0\left(mod5\right)\)

Vinh Pham
Xem chi tiết
Kiều Hoàng Vũ
8 tháng 10 2017 lúc 12:01

bài này làm thế nào 

hiền k hộ ta

Nguyễn Minh Trường
Xem chi tiết