Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Nguyễn Hiền Thảo
Xem chi tiết
Ngô Thị Bình
Xem chi tiết
Đỗ Nguyễn Quốc Đạt
31 tháng 3 2015 lúc 19:22

x-y-z=0

=> x=y+z

     y=x-z

    -z=y-x

B=(1-z/x)(1-x/y)(1+y/z)

B=((x-z)/x)((y-x)/y)((z+y)/z)

B=(y/x)(-z/y)(x/z)

B=(-z.y.x)/(x.y.z)

B=-1

Nguyễn Minh Tuấn
22 tháng 4 2016 lúc 20:49

thank ban nha

Từ Nguyễn Đức Anh
26 tháng 11 2016 lúc 20:59

B=-1    ^_^

nguyễn xoan trà
Xem chi tiết
Đinh quang hiệp
8 tháng 5 2018 lúc 17:16

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z};\frac{1}{x}+\frac{1}{z}=-\frac{1}{y};\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\)

\(A=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}\)

\(=\left(\frac{y}{x}+\frac{y}{z}\right)+\left(\frac{x}{y}+\frac{x}{z}\right)+\left(\frac{z}{x}+\frac{z}{y}\right)=y\left(\frac{1}{x}+\frac{1}{z}\right)+x\left(\frac{1}{y}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(=y\cdot-\frac{1}{y}+x\cdot-\frac{1}{x}+z\cdot-\frac{1}{z}=-1-1-1=-3\)

vậy A=-3

trần thị ngọc trâm
Xem chi tiết
Giang Madridista
Xem chi tiết
Muôn cảm xúc
5 tháng 5 2016 lúc 21:15

x - y - z = 0

x = y + z

y = x - z

z = x - y => -z = y - x

B = (1 - z/x)(1 - x/y) (1 + y/z)

B = (x/x - z/x)( y/y - x/y) ( z/z + y/z)

B = \(\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{z+x}{z}=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)

 

Hồ Văn Minh Nhật
Xem chi tiết
Hang Vu
Xem chi tiết
Lê Thị Huyền Trang
Xem chi tiết
Xyz OLM
30 tháng 10 2019 lúc 22:00

Ta có : \(B=\frac{x+y}{y}.\frac{z+y}{z}=\frac{x+z}{x}=\frac{\left(x+y\right)\left(z+y\right)\left(x+z\right)}{xyz}\)

Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

Nếu x + y + z = 0

=> x + y = - z

=> z + y = - x

=> z + x = - y

Khi đó : B = \(\frac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-\frac{xyz}{xyz}=-1\)

Nếu x + y + z \(\ne\)0

=> \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)

Khi đó \(B=\frac{\left(x+y\right)^3}{x^3}=\frac{\left(2x\right)^3}{x^3}=\frac{2^3.x^3}{x^3}=8\)

Vậy nếu x + y + z = 0 B = - 1

       nếu x + y + z  \(\ne\)0 thì B = 8 

Khách vãng lai đã xóa
Trần Minh Quân
22 tháng 8 2020 lúc 14:30

chỉ có lm thì mới có ăn

Khách vãng lai đã xóa
Phương Thảo Nguyễn
Xem chi tiết