Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh 9/2 Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 12 2021 lúc 22:18

Đề sai rồi bạn

Lê Nữ Han Ni
Xem chi tiết
Lương Đại
27 tháng 3 2022 lúc 21:33

Hình bạn tự vẽ ạ

a, Xét \(\Delta ABC\) và \(\Delta HAC\)  có :

\(\widehat{A}=\widehat{AHC}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta ABC\sim\Delta HAC\left(g-g\right)\)

Ta có : ΔABC vuông A, định lý Pi-ta-go ta đươc :

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)

Mà \(\Delta ABC\sim\Delta HAC\left(cmt\right)\)

\(\Rightarrow\dfrac{AB}{AH}=\dfrac{BC}{AC}\)

hay \(\dfrac{3}{AH}=\dfrac{5}{4}\)

\(\Rightarrow AH=\dfrac{3.4}{5}=2,4\left(cm\right)\)

b, \(S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{3.4}{2}=6\left(cm^2\right)\)

8A6-23 Phạm Thiện Phúc
Xem chi tiết
Kim Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 20:05

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64\)

=>\(AC=\sqrt{64}=8\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot10=6^2=36\)

=>BH=36/10=3,6(cm)

ΔAHB vuông tại H

=>\(S_{HAB}=\dfrac{1}{2}\cdot HA\cdot HB=\dfrac{1}{2}\cdot4,8\cdot3,6=8,64\left(cm^2\right)\)

Nguyễn thị thúy Quỳnh
14 tháng 12 2023 lúc 20:01

a) Để tính độ dài đường cao \(AH\) và số đo \(\angle B\), chúng ta có thể sử dụng các quy tắc trong tam giác vuông.

 

Chúng ta biết rằng trong tam giác vuông, độ dài của đường cao \(AH\) từ đỉnh vuông \(A\) xuống cạnh huyền \(BC\) có thể được tính bằng công thức:

 

\[AH = \frac{1}{2} \times BC\]

 

Trong trường hợp này:

 

\[AH = \frac{1}{2} \times 10 \, \text{cm} = 5 \, \text{cm}\]

 

Số đo của góc \(\angle B\) có thể được tính bằng cách sử dụng hàm tan trong tam giác vuông:

 

\[\tan B = \frac{AH}{AB}\]

 

\[\angle B = \arctan\left(\frac{AH}{AB}\right)\]

 

Trong trường hợp này:

 

\[\tan B = \frac{5}{6}\]

 

\[\angle B = \arctan\left(\frac{5}{6}\right)\]

 

Bạn có thể sử dụng máy tính để tính toán giá trị chính xác của \(\angle B\).

 

b) Để tính diện tích tam giác \(AHB\), chúng ta sử dụng công thức diện tích tam giác:

 

\[S_{AHB} = \frac{1}{2} \times \text{độ dài } AH \times \text{độ dài } AB\]

 

Trong trường hợp này:

 

\[S_{AHB} = \frac{1}{2} \times 5 \, \text{cm} \times 6 \, \text{cm} = 15 \, \text{cm}^2\]

 

Vậy, độ dài của đường cao \(AH\) là \(5 \, \text{cm}\), số đo của góc \(\angle B\) có thể được tính, và diện tích tam giác \(AHB\) là \(15 \, \text{cm}^2\).

Nguyễn thị thúy Quỳnh
14 tháng 12 2023 lúc 20:02

loading...

Nguyễn Diệp Ngọc Ánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 11 2023 lúc 20:09

a: Nửa chu vi tam giác ABC là:

\(\dfrac{2+3+4}{2}=4,5\left(cm\right)\)

Diện tích tam giác ABC là:

\(S_{ABC}=\sqrt{4,5\left(4,5-2\right)\left(4,5-3\right)\left(4,5-4\right)}\)

\(=\sqrt{4,5\cdot2,5\cdot1,5\cdot0,5}=\dfrac{3\sqrt{15}}{4}\)(cm2)

=>\(\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{3\sqrt{15}}{4}\)

=>\(2\cdot AH=\dfrac{3\sqrt{15}}{4}\)

=>\(AH=\dfrac{3\sqrt{15}}{8}\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HB^2+\dfrac{135}{64}=4\)

=>\(HB^2=\dfrac{121}{64}\)

=>HB=11/8(cm)

HB+HC=BC

=>HC+11/8=4

=>HC=4-11/8=21/8(cm)

b: Gọi BK,CE lần lượt là các đường cao ứng với các cạnh AC,AB

 

Vì BK\(\perp\)AC và CE\(\perp\)AB

nên \(S_{ABC}=\dfrac{1}{2}\cdot BK\cdot AC=\dfrac{1}{2}\cdot CE\cdot AB\)

=>\(\left\{{}\begin{matrix}BK\cdot\dfrac{3}{2}=\dfrac{3\sqrt{15}}{4}\\CE\cdot1=\dfrac{3\sqrt{15}}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BK=\dfrac{\sqrt{15}}{2}\left(cm\right)\\CE=\dfrac{3\sqrt{15}}{4}\left(cm\right)\end{matrix}\right.\)

c: Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{4+9-16}{2\cdot2\cdot3}=\dfrac{-1}{4}\)

=>\(\widehat{BAC}\simeq104^029'\)

Xét ΔABH vuông tại H có \(sinB=\dfrac{AH}{AB}=\dfrac{3\sqrt{15}}{16}\)

=>\(\widehat{B}\simeq46^034'\)

Xét ΔABC có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)

=>\(\widehat{ACB}+104^029'+46^034'=180^0\)

=>\(\widehat{ACB}=28^057'\)

Phương Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 3 2023 lúc 14:03

a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)

BD là phân giác

=>BD/AB=CD/AC
=>BD/3=CD/4=35/7=5

=>DB=15cm; DC=20cm

b: AH=21*28/35=16,8cm

c: Xet ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

LuKenz
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2021 lúc 0:09

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{HB}{HC}\)(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(BD\cdot BA=BH^2\)

\(\Leftrightarrow BD=\dfrac{HB^2}{AB}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(CE\cdot CA=CH^2\)

\(\Leftrightarrow EC=\dfrac{HC^2}{AC}\)

Ta có: \(\dfrac{BD}{EC}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)(đpcm)

trần nguyễn tố như
Xem chi tiết
Uyên trần
4 tháng 4 2021 lúc 8:41

tự vẽ hình 

ta có <HBA+<BAH= 90\(^0\)(vì tam giác ABH vg tại H)

Có <BAH+ <HAC= 90\(^0\)(vì tam giác ABC vg tại A)

=> <HBA=<HAC 

Xét tam giác BAH và ACH

<BHA=<AHC\(\left(90^0\right)\)

<ABH=<HAC

=> Tam giác BAH đồng dạng với tam giác ACH

=> BH/AH=AH/CH=> AH^2= BH*CH=4*9=36 cm 

b, ta có BC=BH+CH=4+9=13 cm 

S(ABC) = AH*BC=36*13=468 cm\(^2\)

 

duongkenlee
Xem chi tiết