Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Tuấn Nguyên
Xem chi tiết
Nguyễn Minh Đức
8 tháng 9 2019 lúc 21:03

toi ko bit lam chi biet lam anh thui

Lê Tuấn Nguyên
8 tháng 9 2019 lúc 21:03

Mk cũng khá tốt về Anh nha bạn

Nguyễn Minh Đức
8 tháng 9 2019 lúc 21:09

ban biet lam cau hoi minh vua gui ko

Anh Đúc Cấn
Xem chi tiết
Vũ Thu Thảo
Xem chi tiết
Akai Haruma
28 tháng 7 2021 lúc 15:21

Lời giải:
$(x+y)(x+z)(y+z)(y+x)=2(z+x)(z+y)$

$\Leftrightarrow (z+x)(z+y)[(x+y)^2-2]=0$

$\Leftrightarrow x+z=0$ hoặc $z+y=0$ hoặc $(x+y)^2=2$

Nếu $z+x=0\Leftrightarrow x=-z$

$z^2=x^2$ không có cơ sở bằng $\frac{x^2+y^2}{2}$

Bạn xem lại đề.

Lê Thị Mỹ Hằng
Xem chi tiết
đanh khoa
Xem chi tiết
Trà My
12 tháng 9 2017 lúc 0:44

\(x^2\left(y^2+z^2-x^2\right)+y^2\left(z^2+x^2-y^2\right)+z^2\left(x^2+y^{ 2}-z^2\right)\)

\(=x^2\left[\left(y+z\right)^2-x^2-2yz\right]+y^2\left[\left(z+x\right)^2-y^2-2zx\right]+z^2\left[\left(x+y\right)^2-z^2-2xy\right]\)

\(=x^2\left[\left(y+z-x\right)\left(y+z+x\right)-2xy\right]+y^2\left[\left(z+x-y\right)\left(z+x+y\right)-2zx\right]\)

\(+z^2\left[\left(x+y-z\right)\left(x+y+z\right)-2xy\right]\)

\(=x^2\left[\left(y+z-x\right).0-2yz\right]+y^2\left[\left(z+x-y\right).0-2zx\right]+z^2\left[\left(x+y-z\right).0-2xy\right]\)

\(=x^2\left(-2yz\right)+y^2\left(-2zx\right)+z^2\left(-2xy\right)\)\(=-2x^2yz-2xy^2z-2xyz^2\)

\(=-2xyz\left(x+y+z\right)=-2xyz.0=0\)

Vũ Thu Thảo
Xem chi tiết
Law Trafargal
Xem chi tiết
Akai Haruma
1 tháng 12 2019 lúc 11:47

Lời giải:

Từ \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=2\)

\(\Rightarrow (x+y+z)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=2(x+y+z)\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{xy}{x+z}+\frac{xz}{x+y}+\frac{xy}{y+z}+\frac{y^2}{x+z}+\frac{zy}{x+y}+\frac{xz}{y+z}+\frac{zy}{x+z}+\frac{z^2}{x+y}=2(x+y+z)\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+\frac{xy+zy}{x+z}+\frac{xz+yz}{x+y}+\frac{xy+xz}{y+z}=2(x+y+z)\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+y+z+x=2(x+y+z)\)

\(\Leftrightarrow \frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=x+y+z\) (đpcm)

Khách vãng lai đã xóa
Lê Tuấn Nguyên
Xem chi tiết
Thiên Phong Nguyễn Hà
Xem chi tiết
Bá đạo sever là tao
24 tháng 9 2016 lúc 16:55

bạn thử cosi xem

super xity
Xem chi tiết
super xity
23 tháng 7 2015 lúc 15:21

bgggggggggggggggggggggytttttttttttrcccccccccceeeeeeeeeeeeedx

Đào Đức Doanh
25 tháng 3 2016 lúc 21:22

rtyuiuydghfrtghhfrfghhgfghjhg