Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Bảo Trâm
Xem chi tiết
huyen vu thi
Xem chi tiết
Nguyễn Phương Thảo
29 tháng 3 2016 lúc 21:23

bài này chứng minh bài toán phụ, khá là phức tạp, trình bày ra chắc chết quá

Lạy quan công đừng đánh...
29 tháng 3 2016 lúc 21:40

bài này mình thấy tren mạng đăng lên đó, có kết quả nhưng ko copy được

Phước Nguyễn
30 tháng 3 2016 lúc 9:16

Bài này bạn xem lại trong chtt ấy! Mình giải bài này rồi, giải bằng miệng cho nhanh.

Nguyễn Thành Nam
Xem chi tiết
Thiên thần đáng yêu
Xem chi tiết
Thiên thần đáng yêu
6 tháng 5 2017 lúc 17:20

LAM GIUP VS NHA

Hà Trung Chiến
Xem chi tiết
Nguyễn Linh Chi
19 tháng 4 2016 lúc 12:01

Hình như là sai đề! Nếu mà chứng minh biểu thức trên ko phải là số tự nhiên thì mk chứng minh đc. Còn cái này thì...........?

Mai Hiệp Đức
Xem chi tiết
dong anh duy
3 tháng 1 2020 lúc 20:10

dit me

Khách vãng lai đã xóa
Đinh Đức Hùng
3 tháng 1 2020 lúc 21:27

Đặt \(\left(\frac{a}{b};\frac{c}{b}\right)=\left(x;y\right)\) ta có \(\frac{1}{x}+\frac{1}{y}=2\)

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{\frac{a}{b}+1}{\frac{2a}{b}-1}+\frac{\frac{c}{b}+1}{\frac{2c}{b}-1}=\frac{x+1}{2x-1}+\frac{y+1}{2y-1}\)

\(=1+\frac{3}{2}\left(\frac{1}{2x-1}+\frac{1}{2y-1}\right)=1+\frac{3}{2}.\frac{2x+2y-2}{4xy-2\left(x+y\right)+1}=1+3.\frac{x+y-1}{1}\ge4\)

Do \(\frac{1}{x}+\frac{1}{y}=2\Rightarrow x+y\ge2\)

đpcm

Khách vãng lai đã xóa
Nguyen Thi Thu Hien
Xem chi tiết
Pham Quy Ngoc
Xem chi tiết
huyen vu thi
Xem chi tiết
Trần Quang Đài
22 tháng 3 2016 lúc 21:14

Ta có:\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\frac{a}{b-c}=\frac{b}{a-c}+\frac{c}{b-a}=\frac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)

\(\frac{\Leftrightarrow a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\) Nhân hai vế với \(\frac{1}{b-c}\)

Tương tự ta có:\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-bc+ba-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(2\right);\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+bc-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(3\right)\)

Cộng (1),(2),(3) ta được đpcm

Phạm Bùi Quang Huy
22 tháng 3 2016 lúc 21:01

ai giai minh k cho

Phạm Bùi Quang Huy
22 tháng 3 2016 lúc 21:02

e ma ban lop may