Tính giá trị của A = x + 2y + 3z biết ( x + 2y) ^2 + ( y - 1 )^2 + ( x - z ) ^ 2 = 0
Tính giá trị của A=x+2y+3z
biết (x+2y)2+(y-1)2+(x-z)2=0
giúp mik vs nha
vì \(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\Leftrightarrow\)
\(\left(x+2y\right)^2=0\Leftrightarrow x+2y=0\Leftrightarrow x=2y\left(1\right)\)
\(\left(y-1\right)^2=0\Leftrightarrow y-1=0\Leftrightarrow y=1\left(2\right)\)
\(\left(x-z\right)^2=0\Leftrightarrow x-z=0\Leftrightarrow x=z\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow2y=x=y=2\left(4\right)\)
\(\left(4\right)\Leftrightarrow A=2+2+3\times2=10\)
tính giá trị của a = x + 2y + 3z biết \(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\)
Tính giá trị của A=x+2y+3z. Biết \(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\)
\(\left(x+2y\right)^2\ge0;\left(y-1\right)^2\ge0;\left(x-z\right)^2\ge0\)
\(\Rightarrow\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2\ge0\)
theo đề:\(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\)
\(\Rightarrow\left(x+2y\right)^2=\left(y-1\right)^2=\left(x-z\right)^2=0\)
+)y-1=0=>y=1
ta có:x+2y=0=>x+2=0=>x=-2
Mà x-z=0=>x=z=>z=-3
Vậy x+2y+3z=(-2)+2+3.(-3)=3.(-3)=-27
Tính giá trị của A = x + 2y + 3z Biết (x + 2y)2 + (y - 1)2 + (x - z)2 = 0
tính nhanh nha nhanh nhất mình tick Đúng!!!!!!!!!!!!!!!!!!!!!!!!
Ta có : \(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}y-1=0\\x+2y=0\\x-z=0\end{cases}\Rightarrow\hept{\begin{cases}y=1\\x+2.1=0\\x-z=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=-3\\\left(-3\right)-z=0\end{cases}\Rightarrow}\hept{\begin{cases}y=1\\x=-3\\z=-3\end{cases}}}\)
Ta có : \(\hept{\begin{cases}y=1\\x=-3\\z=-3\end{cases}}\)
Bạn thế vào : \(x+2y+3z\)là ra thôi
Lời giải:
Vì $x,y,z$ tỉ lệ với $5,4,3$ nên:
$\frac{x}{5}=\frac{y}{4}=\frac{z}{3}$
Đặt $\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k; y=4k; z=3k$.
Khi đó:
$P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}$
$=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}$
M=x+2y+3z biết (x+2y)^2+(y-1)^2+(x-x)^2=0. tính giá trị biểu thức M
\(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x+2y=0\\y-1=0\\x-z=0\end{cases}}\Rightarrow\hept{\begin{cases}x+2y=0\\y=1\\x-z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=1\\x-z=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=1\\z=-2\end{cases}}\)
Do đó: \(x+2y+3\text{z}=-2+2-2.3=-6\)
Vậy: \(M=-6\)
Tính giá trị của A=x+2y+3z biết \(\left(x+2y\right)^2+\left(y-1\right)^2+\left(x-z\right)^2=0\)
(Có lời giải rõ ràng)
Vì (x+2y)2 ; (y-1)2 ; (x-z)2 lớn hơn hoặc bằng 0
=>x+2y = 0 ; y-1=0 ;x-z=0
=>x=-2y ; y=1 ;z=x
=>x=-2 ; y=1 ; z=-2
Bài 1
a, Tính giá trị biểu thức: A= 1/2.(1+1/1.3)(1+1/2.4)(1+1/3.5)...(1+1/2015.2017)
b, Tính giá trị biểu thức:B= 2x^2-3x+5 với |x|=1/2
c, Tính giá trị biểu thức:C= 2x-2y+13x^3y^2(x-y)+15(y^2x-x^2y)+(2015/2016)^0 biết x-y=0
d, Tìm x,y biết (2x-1/6)^2 +|3y+12| bé hơn hoặc bằng 0
e, Tìm x,y,z biết: 3x-2y/4=2z-4x/3=4y-3z/2 và x+y+z=18
f, Tìm số nguyên x,y biết x-2xy+y-3=0
g, Cho đa thức f(x)= x^10-101x^9+101x^8-101x^7+...-101x+101. Tính f(100)
h, CMR từ 8 số nguyên dương tùy ý không lớn hơn 20, luôn chọn được ba số x,y,z là độ dài ba cạnh của một tam giác
Tính giá trị của A=x+2y+3z biết (x+2y)2+(x-2)2=0
A=?