Tìm giá trị nhỏ nhất của biểu thức:
B = -|2x + 3| + 2x + 4
Tìm giá trị nhỏ nhất của biểu thức:
B = x2 - 2x -3.
Giúp mình vs ạ!
\(B=\left(x-1\right)^2-4\ge4\\ B_{min}=4\Leftrightarrow x=1\)
\(B=x^2-2x-3=\left(x^2-2x+1\right)-4\)
\(=\left(x-1\right)^2-4\ge-4\)
\(minB=-4\Leftrightarrow x=1\)
\(=\left(x-1\right)^2-4\ge-4\forall x\)
Dấu '=' xảy ra khi x=1
Tìm giá trị nhỏ nhất của biểu thức:
B=\(2x^2-4xy-2x+4y^2+2013\)
B=\(2x^2-4xy-2x+4y^2+2013\)
\(=x^2-4xy+4y^2+x^2-2x+1+2012\)
\(=\left(x-2y\right)^2+\left(x-1\right)^2+2012\ge2012\)
Dấu = xảy ra khi : \(\left(x-1\right)^2=0\Leftrightarrow x=1\)
\(\left(x-2y\right)^2=0\Leftrightarrow2y=1\Leftrightarrow y=\dfrac{1}{2}\)
Vậy \(Min_B=2012\) khi x=1 , y=\(\dfrac{1}{2}\)
Tìm giá trị nhỏ nhất của biểu thức:
B= \(\dfrac{2x^{2^{ }}-12x+25}{x^{2^{ }}-6x+12}\)
\(B=\dfrac{2x^2-12x+25}{x^2-6x+12}=\dfrac{2\left(x^2-6x+12\right)+1}{x^2-6x+12}=2+\dfrac{1}{x^2-6x+9+4}=2+\dfrac{1}{\left(x-3\right)^2+4}\le2+\dfrac{1}{4}=\dfrac{9}{4}\)
Không có min nha bạn . Chỉ có max thôi
Dấu = xảy ra khi x=3
Tìm giá trị nhỏ nhất của biểu thức:B=(2x-1)²+(x+2)²
\(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\(=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\)
Ta thấy \(5x^2\ge0\forall x\)
\(\Rightarrow5x^2+5\ge5\)
\(\Rightarrow B\ge5\)
Dấu "=" xảy ra khi \(x=0\)
...
\(B=4x^2-4x+1+x^2+4x+4\)
\(=5x^2+5\ge5\)
Dấu "=" xảy ra <=> x^2 = 0 <=> x = 0
GTNN của B là 5 khi x = 0
B=(2x-1)²+(x+2)²
=4x2 -4x+x2+4+4x
=5x2+5
xét 5x2 ta thấy : 5x2 lớn hơn hoặc bằng 0 (với mọi x thuộc R)
=>5x2+5 lớn hơn hoặc bằng 5
=>B lớn hơn hoặc bằng 5
Gía trị nhỏ nhất của B đạt được khi :
B=5 <=> x=0
HOK TỐT NHÉ
Tìm giá trị nhỏ nhất của biểu thức:
B= 2x^2+8x+9
C=4x^2y^2+12xy+15
Các bạn giúp tớ với!!
\(B=2\left(x^2+4x+4\right)+1=2\left(x+2\right)^2+1\ge1\)
\(B_{min}=1\) khi \(x=-2\)
\(C=4x^2y^2+12xy+9+6=\left(2xy+3\right)^2+6\ge6\)
\(C_{min}=6\) khi \(xy=-\dfrac{3}{2}\)
Ta có: \(B=2x^2+8x+9\)
\(=2\left(x^2+4x+\dfrac{9}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{1}{2}\right)\)
\(=2\left(x+2\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=-2
Vậy: \(B_{min}=1\) khi x=-2
Cho biểu thức:
B = (\(\dfrac{x+1}{2x-2}\) + \(\dfrac{3}{x^2-1}\) - \(\dfrac{x+3}{2x+2}\)) . \(\dfrac{4x^2-4}{5}\)
a) Tìm điều kiện của x để giá trị của biểu thức được xác định.
b) C/m rằng: khi giá trị của x để giá trị của biểu thức được xác định.
Cho biểu thức:
B = (\(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\)) : (\(1-\dfrac{x-3}{x+1}\))
a) Tìm điều kiện của x để giá trị của biểu thức được xác định
b) Tính giá trị của biểu thức B với x = 2005
a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b) Ta có: \(B=\left(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(1-\dfrac{x-3}{x+1}\right)\)
\(=\left(\dfrac{x-1}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(\dfrac{x+1-x-3}{x+1}\right)\)
\(=\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{-2}{x+1}\)
\(=\dfrac{x^2-1-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}\)
\(=\dfrac{-2x+2}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)
\(=\dfrac{-2\left(x-1\right)}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)
\(=\dfrac{1}{2}\)
Vậy: Khi x=2005 thì \(B=\dfrac{1}{2}\)
a/
Để biểu thức được xác định
\(=>\left\{{}\begin{matrix}2x-2\ne0\\2x+2\ne0\\x+1\ne0\end{matrix}\right.\)
\(\odot2x-2\ne0\)
\(2x\ne2\)
\(x\ne1\)
\(\odot2x+2\ne0\)
\(2x\ne-2\)
\(x\ne-1\)
\(\odot x+1\ne0\)
\(x\ne-1\)
Vậy điều kiện xác định của bt là: \(x\ne-1;x\ne\pm2\)
a, Tìm giá trị lớn nhất của biểu thức: A=4x-x^2+3
b. Tìm giá trị nhỏ nhất của biểu thức:B=4x^2-12x+15
c,Tìm giá trị nhỏ nhất của biểu thức:C=4x^2+2y^2-4xy-4y+1
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của biểu thức:
\(M=x^4-2x^3+2x^2-2x+1\)
\(M=x^4-x^3-x^3+x^2+x^2-2x+1\)
\(=x^3\left(x-1\right)-x^2\left(x-1\right)+\left(x-1\right)^2\)
\(=\left(x-1\right)\left(x^3-x^2\right)+\left(x-1\right)^2\)
\(=\left(x-1\right)^2\cdot x^2+\left(x-1\right)^2=\left(x-1\right)^2\left(x^2+1\right)\)
\(\left(x-1\right)^2\ge0\)\(\forall x\)
\(x^2+1\ge1\)\(\forall x\)
Do đó: \(M>=1\)
Dấu = xảy ra khi x=0
cho biểu thức:B=[(x+1/2x−2) +(3/x^2−1) −(x+3/2x+2)] .(4x^2−4/5 )
a, tìm điều kiện của x để giá trị của biểu thức được xác định?
b, CMR: khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến x
a) ĐK : \(x\ne1\); \(x\ne-1\)
b) Ta có biểu thức:
\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\left(\frac{4x^2-4}{5}\right)\)
\(=\left(\frac{x+1}{2.\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2.\left(x+1\right)}\right).\left(\frac{4.\left(x^2-1\right)}{5}\right)\)
\(=\frac{\left(x+1\right)^2+3.2-\left(x+3\right)\left(x-1\right)}{2.\left(x-1\right)\left(x+1\right)}.\frac{4.\left(x+1\right)\left(x-1\right)}{5}\)
\(=\frac{x^2+2x+2+6-x^2-2x+3}{2.\left(x-1\right)\left(x+1\right)}.\frac{4.\left(x+1\right)\left(x-1\right)}{5}=\frac{40.\left(x+1\right)\left(x-1\right)}{10.\left(x+1\right)\left(x-1\right)}=4\)
Vậy giá trị của biểu thức B không phụ thuộc vào biến x khi \(x\ne1;x\ne-1\)