Tìm a để phương trình 2(a-1)x - a(x-1) = 2a+3 vô nghiệm. kết quả là a =
Tìm a để phương trình a^2 (x-3)=2(2a-1)-5a +x vô nghiệm
\(\Leftrightarrow a^2x-3a^2-4a+2+5a-x=0\)
\(\Leftrightarrow x\left(a^2-1\right)-3a^2+a+2=0\)
\(\Leftrightarrow x\left(a-1\right)\left(a+1\right)=\left(a-1\right)\left(3a+2\right)\)
Để pt vô nghiệm thì a+1=0
hay a=-1
a Tìm m để phương trình vô nghiệm: x2 - (2m - 3)x + m2 = 0.
b Tìm m để phương trình vô nghiệm: (m - 1)x2 - 2mx + m -2 = 0.
c Tìm m để phương trình vô nghiệm: (2 - m)x2 - 2(m + 1)x + 4 - m = 0
\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)
\(b,\left(m-1\right)x^2-2mx+m-2=0\)
\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)
\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)
\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)
\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)
\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)
Cho phương trình ( a mũ 2 + mũ 2 + 3 ) x- 1 = a mũ 2 ( x -1 ) + 3ax, a là tham số. Tìm để:
a, Phương trình đã nhận x = -1 là nghiệm
b, Phương trình đã cho có một nghiệm duy nhất là dương
c, Phương trình đã cho vô nghiệm
d, Phương trình đã cho vô số nghiệm
32+1123+ \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}gfdrrffhjxxojmu09\)
Cho phương trình: 3(a-2)x+2a(x-1)=4a+3 (1).a) Giải phương trình (1) với a=-2 .b) Tìm a để phương trình (1) có nghiệm x = l.
Tìm a để phương trình sau:
b) a2 (x-3)=a(x-7)+2(x+2) có vô số nghiệm
c) a2 (x-1)-a(7x+2)=8x+1 có nghiệm duy nhất lớn hơn -2
d) a(x+3)= 5 - x có nghiệm duy nhất là nghiệm nguyên khi a là số nguyên
b: \(\Leftrightarrow a^2x-3a^2=ax-7a+2x+4\)
\(\Leftrightarrow a^2x-ax-2x=3a^2-7a+4\)
\(\Leftrightarrow x\left(a-2\right)\left(a+1\right)=\left(3a-4\right)\left(a-1\right)\)
Để phương trình có vô số nghiệm thì \(\left\{{}\begin{matrix}\left(a-2\right)\left(a+1\right)=0\\\left(3a-4\right)\left(a-1\right)=0\end{matrix}\right.\Leftrightarrow a\in\varnothing\)
d: \(\Leftrightarrow ax+3a-5+x=0\)
=>x(a+1)=5-3a
Để phương trình có nghiệm duy nhất là số nguyên thì a+1<>0
hay a<>-1
Cho hai phương trình:
7x/8 - 5(x - 9) = 1/6(20x + 1,5) (1)
2(a - 1)x - a(x - 1) = 2a + 3 (2)
Tìm giá trị của a để phương trình (2) có một nghiệm bằng một phần ba nghiệm của phương trình (1).
Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2.
Suy ra, phương trình (3) có nghiệm x = 2
Thay giá trị x = 2 vào phương trình này, ta được (a − 2)2 = a + 3.
Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này: (a − 2)2 = a + 3 ⇔ a = 7
Khi a = 7, dễ thử thấy rằng phương trình (a − 2)x = a + 3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.
Cho phương trình: 2(a-1)x - a(x-1) = 2a + 3
Tìm a để phương trình có 1 nghiệm duy nhất
Viết rõ công thức nghiệm
PT <=> 2aX-2X-aX+a=2a+1
<=> aX-2X=a+1 <=> (a-2)X=a+1
Để PT có nghiệm duy nhất => a-2\(\ne\)0 => a\(\ne\)2
PT có nghiệm là: \(X=\frac{a+1}{a-2}=\frac{a-2+3}{a-2}=1+\frac{3}{a-2}\)
Tìm a để phương trình a^2 (x-1)+a(4x-3)=2(1-2x) có vô số nghiệm
\(\Leftrightarrow a^2x-a^2+4xa-3a-2+4x=0\)
\(\Leftrightarrow x\left(a^2+4a+4\right)=a^2+3a+2\)
Để pt có vô số nghiệm thì a+2=0
hay a=-2