Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Bảo Linh
Xem chi tiết
Vũ Minh Nguyệt
Xem chi tiết
Nguyễn Quỳnh Chi
7 tháng 8 2016 lúc 16:54

a)Ta có : /a+b/ \(\le\)/a/+/b/ ( dấu bằng xảy ra <=> 0 \(\le\)ab) (1)

A= /x+2/+/x-3/

   =/x+2/+/3-x/

Theo (1 ) ta được : /x+2+3-x/ \(\le\)/x+2/ +/3-x/

=> 5 \(\le\)/x+2/+/3-x/ hay 5 \(\le\)/x+2/+/x-3/ = A

Vậy GTNN của A là 5 x=-2 hoặc x=3

b)GTNN của B là 9

Lê Minh Anh
7 tháng 8 2016 lúc 16:58

a) Ta có: /x - 3/ = /3 - x/

=>A = /x + 2/ + /x - 3/ = /x + 2/ + /3 - x/ lớn hơn hoặc bằng /x + 2 + 3 - x/

Mà  /x + 2 + 3 - x/ = /5/ = 5

=>A lớn hơn hoặc bằng 5

Đẳng thức xảy ra khi: (x + 2)(3 - x)=0

=>x = -2 hoặc x = 3

Vậy giá trị nhỏ nhất của A là 5 khi x = -2 hoặc x = 5

Lê Minh Anh
7 tháng 8 2016 lúc 17:07

b) Ta có: /2x - 4/ = /4 - 2x/

=>B = /2x - 4/ + /2x + 5/ = /4 - 2x/ + /2x + 5/ lớn hơn hoặc bằng /4 - 2x + 2x +5/

Mà: /4 - 2x + 2x +5/ = /9/ = 9

=> B lớn hơn hoặc bằng 9

Đẳng thức xảy ra khi: (4 - 2x)(2x + 5) = 0

=>x = 2 hoặc x = -2,5 

Vậy giá trị nhỏ nhất của B là 9 khi x = 2 hoặc x = -2,5.

(Ở cả câu a) và câu b) dấu gạch chéo // biểu thị cho dấu giá trị tuyệt đối)

Trần Trọng Quang
Xem chi tiết
Yen Nhi
30 tháng 6 2021 lúc 21:50

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

Khách vãng lai đã xóa
Yen Nhi
30 tháng 6 2021 lúc 21:56

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

Khách vãng lai đã xóa
Yen Nhi
30 tháng 6 2021 lúc 22:03

\(5.\)

\(x^2-48x+65\)

\(=\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\left(x-24\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow\left(x-24\right)^2-511\ge-511\)với \(\forall x\)

Vậy \(Max=-511\)khi \(x=24\)

Khách vãng lai đã xóa
Nguyễn Hoàng Hoài Anh
Xem chi tiết
Lấp La Lấp Lánh
12 tháng 9 2021 lúc 10:53

a) \(A=\left|x-5\right|+\left|x-7\right|=\left|x-5\right|+\left|7-x\right|\ge\left|x-5+7-x\right|=\left|2\right|=2\)

\(minA=2\Leftrightarrow\)\(7\ge x\ge5\)

b) \(B=\left|2x+1\right|+\left|2x-2\right|=\left|2x+1\right|+\left|2-2x\right|\ge\left|2x+1+2-2x\right|=\left|3\right|=3\)

\(minB=3\Leftrightarrow1\ge x\ge-\dfrac{1}{2}\)

Nguyễn Thái Hà
Xem chi tiết
Girl
5 tháng 3 2018 lúc 13:01

\(M=\left|3x+1\right|+3x-49\)

\(M=\left|-3x-1\right|+3x-49\ge-3x-1+3x-49\)

\(M\ge-50\)

\(N=\left|x-7\right|+x-20=\left|7-x\right|+x-20\)

\(N\ge7-x+x-20=-13\)

\(C=\left|2x+5\right|+\left|x-1\right|+\left|2x-35\right|\)

\(C=\left|2x+5\right|+\left|35-2x\right|+\left|x-1\right|\)

\(C\ge\left|2x+5+35-2x\right|+\left|x-1\right|=40+\left|x-1\right|\ge40\)

Trần Ngọc Linh
Xem chi tiết
lê thị thu huyền
2 tháng 7 2017 lúc 9:10

a) \(\left|x+5\right|\ge0\forall x\)

GTNN của biểu thức =0 khi x=-5

b) \(\left|x-2\right|-3\)

vì \(\left|x-2\right|\ge0\forall x\)nên \(\Rightarrow\left|x-2\right|-3\ge-3\forall x\)

GTNN của biểu thức =-3 khi x=2

c) \(\frac{3}{7}+\left|2x-7\right|\ge\frac{3}{7}\forall x\)

GTNN của biểu thức = 3/7 khi x=7/2

w1daniel
Xem chi tiết
Nguyễn Công Tỉnh
6 tháng 5 2020 lúc 15:48

\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)

\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

Biểu thức A bạn viết đúng chưa?

Khách vãng lai đã xóa
Ngô Văn Tuyên
Xem chi tiết
Hồ Thu Giang
20 tháng 10 2016 lúc 22:21

\(A=x^2+10y^2+2x-6xy-10y+25\)

=> \(A=x^2+2x\left(1-3y\right)+\left(1-3y\right)^2-\left(1-3y\right)^2-10y+25\)

=> \(A=\left(x+1-3y\right)^2-1+6y-9y^2-10y+25\)

=> \(A=\left(x+1-3y\right)^2-9y^2-4y+24\)

=> \(A=\left(x+1-3y\right)^2-\left(3y\right)^2-2.3y.\frac{2}{3}-\left(\frac{2}{3}\right)^2+\frac{220}{9}\)

=> \(A=\left(x+1-3y\right)^2-\left(3y+\frac{2}{3}\right)^2+\frac{220}{9}\)

Có \(\left(x+1-3y\right)^2\ge0\)với mọi x, y

\(\left(3y+\frac{2}{3}\right)^2\ge0\)với mọi y

=> \(A=\left(x+1-3y\right)^2-\left(3y+\frac{2}{3}\right)^2+\frac{220}{9}\ge\frac{220}{9}\)với mọi x, y

Dấu "=" xảy ra <=> \(\left(x+1-3y\right)^2=0\)<=> \(x+1-3y=0\)

và \(\left(3y+\frac{2}{3}\right)^2=0\)=> \(3y+\frac{2}{3}=0\)

=> \(\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{-2}{9}\end{cases}}\)

Hồ Thu Giang
20 tháng 10 2016 lúc 22:21

Bổ xung phần kết luận

KL: Amin = \(\frac{220}{9}\)<=> \(\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{-2}{9}\end{cases}}\)

Đừng hỏi tên tớ vì tớ cũ...
20 tháng 10 2016 lúc 22:31

Bài giải trên nhầm một chỗ

Xét biểu thức sau a - b với b >= 2. Như vậy ta có a - b <= a - 2

Vì vậy nên suy luận có \(\left(x+1-3y\right)^2\ge0\)

                              và \(\left(3y+\frac{2}{3}\right)^2\ge0\)

sau đó suy ra \(A\ge\frac{220}{9}\)

LÀ SAI

Bạn xem lại bài của mình xem nhé

Kudora Sera
Xem chi tiết
trần đức mạnh
5 tháng 2 2021 lúc 14:23

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

Khách vãng lai đã xóa
trần đức mạnh
5 tháng 2 2021 lúc 14:25

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

Khách vãng lai đã xóa
Unirverse Sky
16 tháng 11 2021 lúc 7:53

1 . 

3−x2+2x3−x2+2x

=−(x2−2x−3)=−(x2−2x−3)

=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)

=−((x−1)2−4)=−((x−1)2−4)

=4−(x−1)2≤4=4−(x−1)2≤4

Vậy MAXB=4⇔x−1=0⇒x=1

2 . 

A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98

=2(x−54)2−98=2(x−54)2−98

Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x

Vậy GTNN A = -9/8 <=> x = 5/4 

3 . 

Khách vãng lai đã xóa