Chứng minh rằng 2^2^4n+1 +7 chia hết cho 11
chứng minh rằng: (22^4n+1+7) chia hết cho 11 với mọi n thuộc N
Nếu n=0 thì 2^2^4n + 1 +7 =11 chia hết cho 11
Nếu n > 0 thì 2^2^4n + 1 =2^2^4n × 2^2^4n. (1)
Có:
2^4n=.......6=......5+1=5x +1
Vì ....5 lẻ ;5 lẻ suy ra 5 lẻ nên 2^2^4n =2^5x+1
2^5 đồng dư vs -1 ( mod 11) suy ra (2^5)^x đồng dư với -1( mod 11) ( vì x lẻ)
Suy ra (2^5)^x +1 chia hết cho 11
=) 2× [(2^5)^x +1] chia hết cho 11 (=) 2^5x+1 +2 chia hết cho 11
hay 2^2^4n +2 chia hết cho 11
Lại có 2^2^4n đồng dư với -2 ( mod 11)
Từ (1);(2) suy ra : 2^2^4n × 2^2^4n đồng dư vs 4 (mod 11)
Suy ra 2^2^4n+1 đồng dư vs 4 ( mod 11)
Vậy 2^2^4n+1+7 chia hết cho 11
chứng minh rằng \(3^{2^{4n+1}}+2^{3^{4n+1}}+5\) chia hết cho 11
Ta có:
\(3^{4n+1}=3.81^n\text{≡}3\left(mod10\right)\)
\(\Rightarrow3^{4n+1}=10k+3\)
\(\Rightarrow2^{3^{4n+1}}=2^{10k+3}=8.1024^k\text{≡}8\left(mod11\right)\left(1\right)\)
Ta lại có:
\(2^{4n+1}=2.16^n\text{≡}2\left(mod5\right)\)
\(\Rightarrow2^{4n+1}=5a+2\)
\(\Rightarrow3^{2^{4n+1}}=3^{5a+2}=9.243^a\text{≡}9\left(mod11\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow3^{2^{4n+1}}+2^{3^{4n+1}}+5\text{≡}9+8+5\text{≡}22\text{≡}0\left(mod11\right)\)
nếu có đk n tự nhiên thì hình như dùng đồng dư + 1 chút fermat
1. Cho A = \(2^{2016}-1\) . Chứng minh rằng A chia hết cho 105.
2.Chứng minh rằng \(5^{2017}+7^{2015}\) chia hết cho 12.
3. Chứng minh rằng B = \(3^{2^{2n}}+10\) chia hết cho 13.
4. Chứng minh rằng C = \(3^{2^{4n+1}}+2^{3^{4n+1}}+5\) luôn chia hết cho 22.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Chứng minh rằng vs mọi số tự nhiên n
a,7^4n -1 chia hết cho 5
b,2^4n+2 +1 chia hết cho 5
c,3^4n +2 chia hết cho 5
d,9^2n+1 +1 chia hết cho 10
e,2^4n+1 +3chia hết cho 5
Chứng minh rằng :
a, 2^4n +2 chia hết cho 5
b,9^2n +1 chia hết 10
c, 7^4n -1 chia hết 5
chứng minh rằng với mọi n thuộc N thì 32 4n+1+2 chia hết cho 11
Nếu n=0 thì 2^2^4n + 1 +7 =11 chia hết cho 11.
Nếu n > 0 thì 2^2^4n + 1 =2^2^4n × 2^2^4n. (1). Có: 2^4n=.......6=......5+1=5x +1.
Vì ....5 lẻ ;5 lẻ suy ra 5 lẻ nên ...
Câu trả lời hay nhất: 2^4n = (2^4)^n = ......6( có chữ số tận cùng là 6
=> (2^4n+1)+3= ......0( có chữ số tận cùng là 0)
=>(2^4n+1)+3 chia hết cho 5 với mọi n thuộc N?
mk nghĩ đề bài nó phải thế này chứ : Chứng minh: (2^4n+1)+3 chia hết cho 5 với mọi n thuộc N?-lớp 8
1 Chứng minh (8^102-2^102) chia hết cho 10
2 chứng minh
a 7^4n chia hết cho 5
b 3^4n+1+2 chia hết cho 5
c 2^4n+3+3 chia hết cho 9
d 2^4n+2+1 chia hết cho 5
e 9^2n+1 chia hết cho 5
1 Cho n(n+1) là tích 2 số tự nhiên liên tiếp thì chia hết cho 2 .
Chứng minh: a, 3n mũ 2 + n chia hết b, (4n mũ 2 + 4n ) + 8n + 16 chia hết 8
2 ,Chứng minh:C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .........+ 3 mũ 11 chia hết 13
3 , Tìm số dư của : a, 2004 mũ 2004 khi chia cho 11 b, 776 mũ 776 + 777 mũ 777 + 778 mũ 778 khi chia cho 3 , 5
4 , Chứng minh : 9 mũ 2002 - 1 chia hết 18
5 , Chứng minh : 7 mũ 214 - 4 chia hết 3
6 , Chứng minh : 4 mũ 200 + 3 mũ 1002 chia hết 13
cho mik hỏi câu này nữa a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51
đồng dư thức : chứng minh rằng
\(7^{2^{4n+1}}+4^{3^{4n+1}}-65\) chia hết cho 100 mọi người giúp mình với, thanks
Lời giải:
Bổ sung điều kiện $n$ là số tự nhiên khác $0$
Gọi biểu thức trên là $A$. Ta có:
\(7\equiv -1\pmod 4\Rightarrow 7^{2^{4n+1}}\equiv (-1)^{2^{4n+1}}\equiv 1\pmod 4\)
\(4^{3^{4n+1}}\equiv 0\pmod 4\)
\(\Rightarrow A\equiv 1+0-65=-64\equiv 0\pmod 4\)
Vậy $A\vdots 4(*)$
Mặt khác:
Với $n$ là số tự nhiên khác $0$ thì $2^{4n+1}$ chia hết cho $4$
$\Rightarrow 7^{2^{4n+1}}=7^{4k}=(7^4)^k\equiv 1\pmod {25}$
$3^{4n+1}=3.81^n\equiv 3\pmod {10}$
$\Rightarrow 3^{4n+1}=10t+3$
$\Rightarrow 4^{3^{4n+1}}=4^{10t+3}=64.(4^{10})^t\equiv 64\pmod {25}$
Do đó:
$A\equiv 1+64-65\equiv 0\pmod {25}$ hay $A\vdots 25(**)$
Từ $(*); (**)\Rightarrow A\equiv 0\pmod {100}$
Ta có đpcm.
Bạn có thể gõ lại công thức rõ hơn được không?