Tìm m để phương trình sau có nghiệm duy nhất |2x^2-3x-2|=5m-4x+2x^2 (sử dụng bảng biến thiên)
Tìm m để phương trình sau có nghiệm duy nhất |2x^2-3x-2|=5m-4x+2x^2. Mọi người giải giúp mình nha mình cần gấp
2x² - 3x + 2 = (1/8)(16x² - 24x + 9) + 7/8 = (1/8)(4x - 3)² + 7/8 > 0 nên |2x² - 3x + 2| = 2x² - 3x + 2
|2x² - 3x + 2| = 5m - 8x - 2x²
⇔ 2x² - 3x + 2 = 5m - 8x - 2x²
⇔ 4x² + 5x + 2 - 5m = 0
Để PT có nghiệm duy nhất thì đó phải là nhiệm kép :
Δ = 25 - 16(2 - 5m) = 80m - 7 = 0 ⇔ m = 7/80
Bài 1.Cho hàm số
1.Lập bảng biến thiên và vẽ đồ thị
2.Biện luận số nghiệm của phương trình -x^2 - 2x= 3m bằng cách sử dụng đồ thị (P)
3.Tìm m để phương trình |-x^2-2x+1| có 4 nghiệm phân biệt bằng cách sử dụng đồ thị.
cho phương trình ẩn x: m^2x-m^2-6=4x-5m
tìm tham số m để phương trình có nghiệm duy nhất là số dương
Cho pt : \(x^2-2x-7=-4m\) (1)
Lập bảng biến thiên của pt bậc 2 : \(x^2-2x-7\). Nhìn vào bảng biến thiên hãy tìm m để pt (1):
a. Có 1 nghiệm duy nhất trên đoạn \(\left[-2;2\right]\), trên đoạn \(\left[2;3\right]\), trên đoạn \(\left[-2;-1\right]\)
b. Có 2 nghiệm pb trên đoạn \(\left[-2;2\right]\), \(\left[2;3\right],\left[-2;-1\right]\)
c. Có nghiệm trên đoạn \(\left[-2;2\right]\), \(\left[2;3\right],\left[-2;-1\right]\)
d. Có 2 nghiệm trên đoạn \(\left[-2;2\right]\),\(\left[2;3\right],\left[-2;-1\right]\)
e. Vô nghiệm trên đoạn \(\left[-2;2\right]\), \(\left[2;3\right],\left[-2;-1\right]\)
Giups mk bài này vs . Mk đg cần gấp . Tks ạ
a, (1) có nghiệm duy nhất trên [-2 ; 2] khi
[-2 ; 2] khi \(\left[{}\begin{matrix}-4m=-8\\1\ge-4m>-7\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}m=2\\\dfrac{-1}{4}\le m< \dfrac{7}{4}\end{matrix}\right.\) hay m ϵ [\(\dfrac{-1}{4};\dfrac{7}{4}\)) \(\cup\left\{2\right\}\)
(1) có nghiệm duy nhất trên [2 ; 3] khi
- 4 ≥ - 4m ≥ - 7 ⇔ 1 ≤ m ≤ \(\dfrac{7}{4}\) hay m ∈\(\left[1;\dfrac{7}{4}\right]\)
(1) có nghiệm duy nhất trên [-2; -1] khi
-4 ≤ 4m ≤ 1 hay m ∈ \(\left[\dfrac{-1}{4};1\right]\)
b, (1) có 2 nghiệm phân biệt trên [-2 ; 2] khi
-4m ∈ (-8 ; -7] ⇒ m ∈\(\)[\(\dfrac{7}{4}\); 2)
(1) có 2 nghiệm phân biệt trên [2; 3] và [-2; -1] khi m ∈ ∅
c, (1) có nghiệm trên đoạn
[-2; 2] khi -8 ≤ -4m ≤ 1 ⇒ m ∈ \(\left[\dfrac{-1}{4};2\right]\)
[2 ; 3] khi - 4 ≥ - 4m ≥ - 7 hay m ∈\(\left[1;\dfrac{7}{4}\right]\)
[-2 ; -1] khi -4 ≤ 4m ≤ 1 hay m ∈ \(\left[\dfrac{-1}{4};1\right]\)
d, dường như là nó giống câu b,
e, (1) vô nghiệm trên đoạn [-2 ; 2] khi
\(\left[{}\begin{matrix}-4m>1\\-4m< -8\end{matrix}\right.\)hay \(m\in\left(-\infty;\dfrac{-1}{4}\right)\cup\left(2;+\infty\right)\)
(1) vô nghiệm trên đoạn [2; 3] khi
m ∈ R \ \(\left[1;\dfrac{7}{4}\right]\)
(1) vô nghiệm trên [-2 ; -1] khi m ∈ R \ \(\left[\dfrac{-1}{4};1\right]\)
Có sai sót xin thông cảm
P/s :Bạn tự vẽ bảng biến thiên nha, nhớ chia khoảng cách các giá trị của x cho chuẩn vào, nhớ thêm cả f(0) và trong bảng nhá
Bài 4:
a) Tìm m để phương trình sau có nghiệm duy nhất: 2x - mx + 2m - 1 = 0.
b) Tìm m để phương trình sau có vô số nghiệm: mx + 4 = 2x + m2.
c) Tìm m để phương trình sau có nghiệm duy nhất dương: (m2 - 4)x + m - 2 = 0
à bài này a nhớ (hay mất điểm ở bài này) ;v
xinloi cậu tớ muốn giúp lắm mà tớ ngu toán:)
a)Ta có \(2x-mx+2m-1=0\\ =>x\left(2-m\right)+2m-1=0\)
Để pt có nghiệm duy nhất thì \(a\ne0=>2-m\ne0\\=>m\ne2\)
b)Ta có \(mx+4=2x+m^2\\ =>mx+4-2x+m^2=0\\ =>\left(m-2\right)x=m^2-4\)
Để pt vô số nghiệm thì \(\left\{{}\begin{matrix}m-2=0\\m^2-4=0\end{matrix}\right.=>\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(=>m=2\)
c)Để pt có nghiệm duy nhất thì \(m^2-4\ne0>m\ne\pm2\)
Chắc vậy :v
Cho phương trình \(\dfrac{3x^2-1}{\sqrt{2x-1}}=\sqrt{2x-1}+mx\) . tìm m để phương trình có nghiệm duy nhất
Tìm m để phương trình 5 x 2 - 2 x + m - 5 x 2 - 4 x + m + 2 = 2 1 - x có nghiệm duy nhất.
A. 1
B. 2
C. Mọi x thuộc R
D. m=1 hoặc m=2
Tìm m để phương trình ||3-x|-|2x+1||=m có 4 nghiệm phân biệt sử dụng bẳng biến thiên.
a) Chứng minh rằng \(\forall\) x, phương trình sau vô nghiệm
\(\left|x-1\right|+\left|2-x\right|=-4x^2+12x-10\)
b)Cho phương trình: \(m^2+m^2x=4m+21-3mx\) (x là ẩn)
Tìm m để phương trình trên có nghiệm dương duy nhất.
\(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)
\(\Rightarrow VT>VP\) ; \(\forall x\)
\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm
b.
\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)
\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)
Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)
Để nghiệm pt dương
\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)