2008 + 2007/2 + 2006/3 + ... + 2/2007 + 1/2008
1/2 +1/3+1/4 .... +1/2007 +1/2008
2008/1 =2007/2 + 2006/3 ... + 2/2007 + 1/2008
So sánh
bài 1 :A= 2006/2007-2007/2008+2008/2009-2009/2010
B= -1/2006*2007-1/2008*2009
bài 2: C= 2006/2007+2007/2008+2008/2009+2009/2006 với 4
Tính giá trị biểu thức
A=(2008+2007/2+2006/3+...............+3/2006+2/2007+1/2008):(1/2+1/3+.....+1/2008+1/2009)
Tính tỉ số B A , biết: 2008 1 2007 2 ... 3 2006 2 2007 1 2008 2009 1 2008 1 2007 1 ... 4 1 3 1 2 1 = + + + + + = + + + + + + B A
2008+2007/2+2006/3+...+2/2007+1/2008
1/2+1/3+1/4+...1/2008+1/2009
A=\(\frac{\frac{2008}{2}+\frac{2007}{3}+\frac{2006}{4}+...+\frac{2008}{2009}}{\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{1}{2008}}\)
So sánh 2 biểu thức:
A = 2006/2007 + 2007/2008 + 2008/2009
B = 2006 + 2007 + 2008/2007 + 2008 + 2009
\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}=1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}\)
\(=3-\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}>1\).
\(B=\frac{2006+2007+2008}{2007+2008+2009}< \frac{2007+2008+2009}{2007+2008+2009}=1\).
Suy ra \(A>B\).
2008/1+2007/2+2006/3+....+2/2007+1/2008
___________________________________
1/2+1/3+1/4+.....+1/2008+1/2009
P/s : Lớp 6 nhé bạn
Dấu \(.\)là dấu nhân
Đặt \(A=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}\)
Ta có :
\(A=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(\Rightarrow A=1+\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)\)
\(\Rightarrow A=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)
\(\Rightarrow A=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)
\(\Rightarrow A=2009.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)
\(\Rightarrow A=2009.B\)
Nên : \(\frac{A}{B}=\frac{2009.B}{B}=2009\)
Vậy kết quả biểu thức đã cho là \(2009\)
~ Ủng hộ nhé
\(\frac{\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{2009.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=2009\)
\(\frac{\frac{2008}{1}+\frac{2007}{2}+...+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{\frac{1}{1}+\left(1+\frac{2007}{2}\right)+...+\left(1+\frac{1}{2008}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}}\)
\(=\frac{\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2009}}\)
\(=\frac{2009\times\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2009}}\)
\(=2009\)
\(\dfrac{2008}{1}\)+\(\dfrac{2007}{2}\)+\(\dfrac{2006}{3}\)+......+\(\dfrac{2}{2007}\)+\(\dfrac{1}{2008}\)
Help me
\(=\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1\)
\(=\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2008}+\dfrac{2009}{2009}\)
\(=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2009}\right)\)