Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vu dieu linh
Xem chi tiết
Toàn Khánh
Xem chi tiết
mai anh dung
Xem chi tiết
Hoàng Quân
Xem chi tiết
Hoàng Quân
24 tháng 11 2016 lúc 20:41

Tìm max của biểu thức: 1 3 4 2 + − x x .

Hê Hê
Xem chi tiết
Đào Minh Tiến
16 tháng 2 2017 lúc 9:41

con cho

Chíu Nu Xíu Xiu
Xem chi tiết
Thuyết Dương
30 tháng 3 2016 lúc 20:26

To quábatngo

Chíu Nu Xíu Xiu
30 tháng 3 2016 lúc 20:32

hiha

Nguyễn Thạc Kiều Trinh
Xem chi tiết
Đoàn Đức Hà
16 tháng 5 2021 lúc 21:42

\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}=1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}\)

\(=3-\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}>1\).

\(B=\frac{2006+2007+2008}{2007+2008+2009}< \frac{2007+2008+2009}{2007+2008+2009}=1\).

Suy ra \(A>B\).

Khách vãng lai đã xóa
Vũ Lan Phương
Xem chi tiết
Arima Kousei
1 tháng 6 2018 lúc 9:22

P/s : Lớp 6 nhé bạn 

Dấu \(.\)là dấu nhân 

Đặt \(A=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)  

      \(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}\)

Ta có : 

\(A=\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}\)

\(\Rightarrow A=1+\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)\)

\(\Rightarrow A=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}\)

\(\Rightarrow A=\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}\)

\(\Rightarrow A=2009.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)\)

\(\Rightarrow A=2009.B\)

Nên : \(\frac{A}{B}=\frac{2009.B}{B}=2009\)

Vậy kết quả biểu thức đã cho là \(2009\)

~ Ủng hộ nhé 

Thanh Tùng DZ
1 tháng 6 2018 lúc 9:25

\(\frac{\frac{2008}{1}+\frac{2007}{2}+\frac{2006}{3}+...+\frac{2}{2007}+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)

\(=\frac{\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{2}{2007}+1\right)+\left(\frac{1}{2008}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)

\(=\frac{\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2007}+\frac{2009}{2008}+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)

\(=\frac{2009.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2008}+\frac{1}{2009}}\)

\(=2009\)

_Never Give Up_ĐXRBBNBMC...
1 tháng 6 2018 lúc 9:27

\(\frac{\frac{2008}{1}+\frac{2007}{2}+...+\frac{1}{2008}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}}\)

\(=\frac{\frac{1}{1}+\left(1+\frac{2007}{2}\right)+...+\left(1+\frac{1}{2008}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}}\)

\(=\frac{\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2009}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2009}}\)

\(=\frac{2009\times\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2009}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2009}}\)

\(=2009\)

Linh Trịnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 1 2022 lúc 11:48

\(=\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1\)

\(=\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2008}+\dfrac{2009}{2009}\)

\(=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2009}\right)\)