Tìm Min A = 4x^2 - 3x + 1/(4x) + 2015
Tìm min :
N = \(\dfrac{3x^2+2x+5}{4x^2+4x+1}\)
\(N=\dfrac{57x^2+38x+95}{19\left(4x^2+4x+1\right)}=\dfrac{14\left(4x^2+4x+1\right)+\left(x^2-18x+81\right)}{19\left(4x^2+4x+1\right)}=\dfrac{14}{19}+\left(\dfrac{x-9}{2x+1}\right)^2\ge\dfrac{14}{19}\)
\(N_{min}=\dfrac{14}{19}\) khi \(x=9\)
Nếu đặt ẩn: \(N=\dfrac{3x^2+2x+5}{\left(2x+1\right)^2}\)
Đặt \(2x+1=t\Leftrightarrow x=\dfrac{t-1}{2}\)
\(\Rightarrow N=\dfrac{3\left(\dfrac{t-1}{2}\right)^2+2\left(\dfrac{t-1}{2}\right)+5}{t^2}=\dfrac{3t^2-2t+19}{4t^2}=\dfrac{19}{4t^2}-\dfrac{1}{2t}+\dfrac{3}{4}\)
\(N=\dfrac{19}{4}\left(\dfrac{1}{t}-\dfrac{1}{19}\right)^2+\dfrac{14}{19}\ge\dfrac{14}{19}\)
Tìm Min Max nếu có của
A=(x^2+3x+2)/(x^2+2x+1)
B=(4x^2+4x-7)/(x^2-4x+4)
C=(3x+2)/(x^2-2x+1)
1) Tìm MAX A = 3 - 4x2 - 4x ; \(B=\frac{1}{x^2+6x+11}\)
2) Tìm Min
a,3x^2 - 3x + 1
b,|3x - 3| + |3x - 5|
1) A = 3 - 4x2 - 4x = - (4x2 + 4x +1) + 4 = - (2x+1)2 + 4
Vì - (2x+1)2 \(\le\)0 nên A = - (2x+1)2 + 4 \(\le\) 4 vậy maxA = 4 khi 2x+1 = 0 => x = -1/2
b) ta có x2 + 6x + 11 = x2 + 2.3x + 9 + 2 = (x+3)2 + 2 \(\ge\) 0 + 4 = 4
=> \(B=\frac{1}{x^2+6x+11}\le\frac{1}{4}\) vậy maxB = 1/4 khi x = -3
2) a) 3x2 - 3x + 1 = 3.(x2 - x) + 1 = 3.(x2 - 2.x\(\frac{1}{2}\) + \(\frac{1}{4}\)) + \(\frac{1}{4}\) = 3.(x - \(\frac{1}{2}\) )2 + \(\frac{1}{4}\) \(\ge\)0 + \(\frac{1}{4}\)= \(\frac{1}{4}\)
vậy min(3x2 - 3x + 1) = 1/4 khi x = 1/2
b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a - b|. dấu = khi a.b < 0
ta có: |3x - 3| + |3x - 5| \(\ge\) |3x - 3 - (3x - 5)| = |2| = 2
vậy min = 2 khi (3x - 3)(3x - 5) < 0 hay 1< x < 5/3
Tìm min
a)|x+3|+|3x+5|+|4x+1|+5x+2
b)|2x+3|+|3x+4|+|4x+5|-6x+5
Tìm min
a)|x+3|+|3x+5|+|4x+1|+5x+2
b)|2x+3|+|3x+4|+|4x+5|-6x+5
Bài đã đăng rồi bạn lưu ý không đăng lại làm loãng box toán.
tìm GTNN của 4x^2-3x+1/4x+2015
Tìm min
F=3x^2 +x -2
G= 4x^2+2x-1
H=5x^2-x+1
Tìm max
A= -x^2 -6x+3
B=-x^2+8x-1
C= -x^2-3X+4
D= -2x^2+3x-1
E= -3x^2 – x +2
F= -5x^2 -4x +3
G= -3x^2 – 5x+1
Tìm min:
$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$
$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$
$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$
Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$
Tìm min
$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$
$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)
Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-1}{4}$
Tìm min
$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$
$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$
$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$
$\Leftrightarrow x=\frac{1}{10}$
Với a>0 tìm giá trị nhỏ nhất của biểu thức P=(4x^2) - 3x +(1/4x) + 2015
\(P=\left(4x^2\right)-3x+\left(\frac{1}{4x}\right)+2015\)
\(=\left(4x^2-4x+1\right)+x+\frac{1}{4x}+2014\)
\(=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2014\)
Áp dụng bđt Cauchy cho 2 số không âm ;
\(x+\frac{1}{4x}\ge2\sqrt[2]{\frac{1}{4}}=1\)
\(< =>\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2014\ge0+1+2014=2015\)
Vậy \(Min_p=2015\)xảy ra khi \(x=\frac{1}{2}\)
Tìm Min (Max)
A= 3x2+4x+5
B= -4x2+5x
C= 3x2-4+4x