x : y : z = 3 : 7 :2 và x^2 + y^2 + 3z^2 = 316
. Giup mh với các bn
Tim x;y;z biết:
x/3=y/7=z/2 và 2x2+y2+3z2=316
a) x/3=y/4=z/5 và 2x + 3y + 5z = 86
b) x/3=y/4; y/6=z/8 và 3x - 2y - z = 13
c) x/3=y/7=z/2 và 2x^2 + y^2+3z^2 = 316
Tìm x,y,z biết x,y,z tỷ lệ với 3; 7; 2 và 2x2 + y2 + 3z2 = 316
hộ mik cái nhé (cấm xem chùa dưới mọi hình thức) thank
x, y, z tỉ lệ với 3, 7, 2
=> \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)
Đặt \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=k\Rightarrow\hept{\begin{cases}x=3k\\y=7k\\z=2k\end{cases}}\)
2x2 + y2 + 3z2 = 316
<=> 2.(3k)2 + (7k)2 + 3.(2k)2 = 316
<=> 2.9k2 + 49k2 + 3.4k2 = 316
<=> 18k2 + 49k2 + 12k2 = 316
<=> 79k2 = 316
<=> k2 = 4
<=> k = ±2
Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=7\cdot2=14\\z=2\cdot2=4\end{cases}}\)
Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=7\cdot\left(-2\right)=-14\\z=2\cdot\left(-2\right)=-4\end{cases}}\)
Vậy ( x ; y ; z ) = { 6 ; 14 ; 4 ) , ( -6 ; -14 ; -4 ) }
Theo bài ra ta có : \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)
Đặt \(\hept{\begin{cases}x=3k\\y=7k\\z=2k\end{cases}}\)Ta có : \(2x^2+y^2+3z^2=316\)
\(2.\left(3k\right)^2+\left(7k\right)^2+3.\left(2z\right)^2=316\)
\(\Leftrightarrow18k^2+49k^2+12k^2=316\Leftrightarrow49k^2=316\Leftrightarrow k=\pm2\)
Tự thay nhé
Tìm x,y,z biết :
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{2}\) và 2x2 + y2 + 3z2 = 316
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{2}\)
\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{49}=\dfrac{z^2}{4}\)
\(\Rightarrow\dfrac{2x^2}{18}=\dfrac{y^2}{49}=\dfrac{3z^2}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x^2}{18}=\dfrac{y^2}{49}=\dfrac{3z^2}{12}=\dfrac{2x^2+y^2+3z^2}{18+49+12}=\dfrac{316}{79}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.18:2=36\\y^2=4.49=196\\z^2=4.12:3=16\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=6\\y=14\\z=4\end{matrix}\right.\\\left\{{}\begin{matrix}x=-6\\y=-14\\z=-4\end{matrix}\right.\end{matrix}\right.\)
Tìm x ,y ,z biết :
\(\frac{x}{3}=\frac{y}{7}=\frac{Z}{2}\) và 2x2 + y2 + 3z2 = 316
Đặt \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=k\)
=> \(x=3k\) \(y=7k\) \(z=2k\)
Ta có: \(2x^2+y^2+3z^2=316\)
\(\Leftrightarrow\)\(2\left(3k\right)^2+\left(7k\right)^2+3\left(2k\right)^2=316\)
\(\Leftrightarrow\)\(18k^2+49k^2+12k^2=316\)
\(\Leftrightarrow\)\(79k^2=316\)
\(\Leftrightarrow\)\(k^2=4\)
\(\Leftrightarrow\)\(k=\pm2\)
\(k=2\)thì: \(x=6;\)\(y=14;\)\(z=4\)\(k=-2\)thì: \(x=-6;\)\(y=-14;\)\(z=-4\)Vậy...
Tìm x,y,z biết :
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{Z}{8}\) và 2x2 + y2 3z2 = 316
Lời giải:
Đặt \(\frac{x}{3}=\frac{y}{7}=\frac{z}{8}=t\)
\(\Rightarrow \left\{\begin{matrix} x=3t\\ y=7t\\ z=8t\end{matrix}\right.\)
Thay vào điều kiện đề bài:
\(2x^2+y^2+3z^2=316\)
\(\Leftrightarrow 2(3t)^2+(7t)^2+3(8t)^2=316\)
\(\Leftrightarrow t^2(2.3^2+7^2+3.8^2)=316\)
\(\Leftrightarrow t^2.259=316\Rightarrow t=\pm \sqrt{\frac{316}{259}}\)
Nếu \(t=\sqrt{\frac{316}{259}}\Rightarrow \left\{\begin{matrix} x=3t=3\sqrt{\frac{316}{259}}\\ y=7t=7\sqrt{\frac{316}{259}}\\ z=8t=8\sqrt{\frac{316}{259}}\end{matrix}\right.\)
Nếu \(t=-\sqrt{\frac{316}{259}}\Rightarrow \left\{\begin{matrix} x=3t=-3\sqrt{\frac{316}{259}}\\ y=7t=-7\sqrt{\frac{316}{259}}\\ z=8t=-8\sqrt{\frac{316}{259}}\end{matrix}\right.\)
P/s: số không được đẹp cho lắm.
b2:tìm x,y,z
a) x/3=y/4=z/5 va 2x+3y+5z=86
b) x/3=y/4; y/6=z/8 va 3x-2y-z=13
c) x/2=y'3=z/4 va xy+yz+zx=104
b3:tìm x,y,z
a)x/3=y/7=z/2 va 2x^2 +y^2 +3z^2=316
b)x:y:z=2:5:7 va 3x+2y-z=27
2.
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)
\(\Rightarrow x=6;y=8;z=10\)
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)
\(\Rightarrow x=-9;y=-12;z=-16\)
3.
a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
\(\Rightarrow x=12;y=28;z=8\)
b) x : y : z = 2 : 5 : 7
\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'
\(\Rightarrow x=6;y=15;z=21\)
2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)
=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10
b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)
=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16
c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có: xy+yz+zx=104
=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104
=> 6k2 + 12k2 + 8k2 = 104
=> k2(6+12+8) = 104
=> 26k2 = 104
=> k2 = 4
=> k = ±2
Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)
3) a, Đặt k=x/3=y/7=z/2
\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
=> k2 = 4 => k = ±2
Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)
b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21
Sửa lại bài 3a
Với k = 2 thì \(\hept{\begin{cases}x=2.3=6\\y=2.7=14\\z=2.2=4\end{cases}}\)
Với k=-2 thì \(\hept{\begin{cases}x=\left(-2\right).3=-6\\y=\left(-2\right).7=-14\\z=\left(-2\right).2=-4\end{cases}}\)
bài 10 a)x/2=y/3 và 4x-3y=-2
b)2x=5y và x+y=-42
bài 11 a)x/3=y/4=z/6 và x+2y-3z=-14
b)x/5=y/6;y/8=z/7 và x=y-z=138
c)x=y/3=z/5 và 15x-5y=3z=45
dx/2=y/3;y/2=z/3 vâ x-2y+3z=19
Bài `10`
`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`
ADTC dãy tỉ số bằng nhau ta có :
`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`
`=> x/2=2=>x=2.2=4`
`=>y/3=2=>y=2.3=6`
`b,` Ta có : `2x=5y=>x/5=y/2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5=y/2=(x+y)/(5+2)=-42/7=-6`
`=>x/5=-6=>x=-6.5=-30`
`=>y/2=-6=>y=-6.2=-12`
Bài `11`
`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`
`=>x/3=2=>x=2.3=6`
`=>y/4=2=>y=2.4=8`
`=>z/6=2=>z=2.6=12`
Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`
`d,` Ta có :
`x/2=y/3=>x/4=y/6`
`y/2=z/3=>y/6=z/9`
`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`
ADTC dãy tỉ số bằng nhau ta có :
`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`
`=>x/4=1=>x=1.4=4`
`=>y/6=1=>y=1.6=6`
`=>z/9=1=>z=1.9=9`
Tìm x,y,z biết :
2x = 3y và x - 5y = 2,1
x/3 = y7 = z/2 và 2x^2 + y^2 + 3z ^2 = 316
a, \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}=\frac{5y}{10}\)
Áp dụng tính chất Dãy tỉ số bằng nhau
\(\frac{x}{3}=\frac{5y}{10}=\frac{x-5y}{3-10}=\frac{2,1}{-7}\frac{-3}{10}\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=-\frac{3}{10}\\\frac{y}{2}=-\frac{3}{10}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{9}{10}\\y=-\frac{3}{5}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-\frac{9}{10}\\y=-\frac{3}{5}\end{matrix}\right.\)
b, Đặt \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=k\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=k\\\frac{y}{7}=k\\\frac{z}{2}=k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3k\\y=7k\\z=2k\end{matrix}\right.\)
2x2+y2+3z2= 2.(3k)2+(7k)2+3.(2k)2
316= 18k2+49k2+12k2
316=k2.(18+49+12)
316=79k2
4=k2
\(\Rightarrow\left[{}\begin{matrix}k=-2\\k=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3k\\y=7k\\z=2k\end{matrix}\right.\\\left\{{}\begin{matrix}x=3k\\y=7k\\z=2k\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-6\\y=-14\\z=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=6\\y=14\\z=4\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-6\\y=-14\\z=-4\end{matrix}\right.\)
và \(\left\{{}\begin{matrix}x=6\\y=14\\z=4\end{matrix}\right.\)
*Chúc bạn học tốt*
Chiều nay mk phải nộp rồi giúp mk với !
Bài giải
a, \(2x=3y\text{ }\Rightarrow\text{ }\frac{x}{3}=\frac{y}{2}=\frac{5y}{10}=\frac{x-5y}{3-10}=\frac{2,1}{-7}=\frac{-3}{10}\)
( Áp dụng t/c ... )
\(\Rightarrow\text{ }x=\frac{-3}{10}\cdot3=-\frac{9}{10}\)
\(y=\frac{-3}{10}\cdot2=-\frac{6}{10}\)
b, \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow\text{ }\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}\text{ }=\frac{2x^2}{18}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
\(\Rightarrow\text{ }x^2=4\cdot9=36\text{ }\Rightarrow\text{ }x=\pm6\)
\(y^2=4\cdot49=196\text{ }\Rightarrow\text{ }y=\pm14\)
\(z^2==4\cdot4=16\text{ }\Rightarrow\text{ }z=4\)