cho tam giác ABC và điểm M nằm trong tam giác CMR : 1/2 AB+AC+BC<MA+MB+MC<AB+AC+BC
Cho điểm M nằm trong tam giác ABC. 1) So sánh AB với MA + MB . 2) CMR: AB + AC + BC < 2(MA + MB + MC) . 3) Chứng minh rằng MA + MB +MC lớn hơn nửa chu vi tam giác ABC.
Cho tam giác ABC vuông tại A có AB=1 và AC=2. Có 6 điểm thuộc tam giác ABC ( nằm trong hoặc nằm trên cạnh của tam giác ABC). CMR: tôn tại hai điểm có khoảng cách không vượt quá 1.
1.Cho tam giác ABC cân tại A có AB = AC = 5cm, Bc= 6cm. Đường phân giác AD, BE, CF.
a)Tính EF.
b)Tính diện tích tam giác DEF
2. Kẻ đường cao BD và CE của tam giác ABC và các đường cao DF và EG của tam giác ADE.
a) C/m: AD.AE = AB.AG = AC.AF
b)C/m: FG//BC
3.Qua điểm I nằm bên trong tam giác ABC, dựng 3 đường thẳng // với các cạnh của tam giác: DE//BC, MN//CA, PQ//AB (D,M thuộc Ab; N,P thuộc BC; E,Q thuộc AC).CMR: (BD/BA) + (AQ/AC) + (CN/CB) = 1
Cho tam giác ABC vuông tại A (AB<AC) . Tia phân giác của góc A cắt BC tại D . Trên cạnh AC lấy điểm M sao cho AM=AB. Gọi giao điểm của AB và MD là E , giao của AD và CE là H .
a) CMR : BD=DM
b) CMR:tam giác DBE = tam giác MDC
c) CMR:2AH = EC
d) Tìm thêm điều kiện của tam giác ABC để điểm D là điểm nằm trong tam giác AEC và cách đều ba cạnh của tam giác AEC
hình các bn tự vẽ nhé(mog các bn thông cảm máy mk ko vẽ dc hình)
a, Xét tam giác BDA và tam giác MDA,có
AD cạnh chung
góc BAD=góc MAD (vì AD là tia phân giác của góc A)
BA=MA(gt)
Do đó tam giác BDA= tam giác MDA(c-g-c)
Suy ra BD=MD(2 cạnh tương ứng)
b,
TA có :góc ABD+góc DBE= 180 độ
góc AMD + góc DMC =180 độ
Mà góc ABD= góc AMD (cmt)
suy ra góc DBE= góc DMC
Xét tam giác BDE và tam giác MDC ,có:
góc BDE=góc MDC(2 góc đối đỉnh)
BD=MD(cmt)
góc DBE= góc DMC(cmt)
Do đó tam giác BDE =tam giác MDC (g-c-c)
s c,d mk đang nghĩ chưa ra kết quả khi nào ra mk giải tiếp heheh thông cảm
cho tam giác abc , điểm d nằm giữa a và c. cmr ab+ac-bc/2 < ad + ab+ac+bc/2
Cho tam giác abc và các điểm m,n nằm trong tam giác sao cho đường thẳng MN cắt đoạn thẳng AB và AC. CMR: BM+MN+NC<AB+AC
Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC
1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath
Cho tam giác ABC, O là một điểm bất kì nằm trong tam giác. Dựng các đường thẳng DE, FK, MN tương ứng song song với AB, AC và BC sao cho F và M trên cạnh AB, E và K trên cạnh BC và N, D trên cạnh AC.
a)CMR:\(\dfrac{ÀF}{AB}+\dfrac{BE}{BC}+\dfrac{CN}{AC}=1\)
b)Đặt \(S_1=S_{OME};S_2=S_{OEK};S_3=S_{ODN};S=S_{ABC}\)
CMR\(S=\left(\sqrt{S_1}+\sqrt{S_2}+\sqrt{S_3}\right)^2\)
cho tam giác abc va điểm m nằm trong tam giác. CMR MB+MC<AB+AC