giả sử x^2+x+1=0 vẫn đúng (vẫn có x thỏa mãn) , tính x^n+1/x^n?
Giả sử hàm số y=f(x) liên tục, nhận giá trị dương trên (0;+∞) và thỏa mãn f(1)=1, f ( x ) = f ' ( x ) 3 x + 1 , với mọi x>0. Mệnh đề nào sau đây đúng
A. 1<f(5)<2
B. 4<f(5)<5
C. 2<f(5)<3
D. 3<f(5)<4
Giả sử hàm số y=f(x) liên tục, nhận giá trị dương trên 0 ; + ∞ và thỏa mãn f(1)=1, f ( x ) = f ' ( x ) 3 x + 1 , với mọi x>0. Mệnh đề nào sau đây đúng?
Giả sử phương trình: ax2+bx+c=0 (a,b,c khác 0) có 2 no phân biệt trong đó có đúng 1 no dương x1 thì pt bậc 2 : ct2+bt+a=0 cũng có 2 no phân biệt trong đó có t1>0 thỏa mãn: x1+t1\(\ge\)2
Giả sử hàm số y = f(x) đồng biến trên ( 0 ; + ∞ ) ; liên tục và nhận giá trị dương trên ( 0 ; + ∞ ) và thỏa mãn f ( 3 ) = 2 3 và [ f ' ( x ) ] 2 = ( x + 1 ) . f ( x ) . Mệnh đề nào dưới đây đúng?
A . 2613 < f 2 ( 8 ) < 2614 .
B. 2614 < f 2 ( 8 ) < 2615 .
C. 2618 < f 2 ( 8 ) < 2619 .
D. 2616 < f 2 ( 8 ) < 2617 .
Giả sử hàm số y = f(x) liên tục, nhận giá trị dương trên khoảng 0 ; + ∞ và thỏa mãn f(1) = 1; f ( x ) = f ' ( x ) 3 x + 1 . Mệnh đề nào đúng trong các mệnh đề dưới đây
Giả sử hàm f có đạo hàm cấp 2 trên R thỏa mãn f 1 = f ' 1 = 1 và f 1 - x + x 2 f ' ' x = 2 x , ∀ x ∈ ℝ . Tính tích phân ∫ 0 1 x f ' x d x
A. I = 1
B. I = 2
C. I = 1 3
D. I = 2 3
Giả sử hàm số f có đạo hàm cấp n trên R thỏa mãn f 1 - x + x 2 f ' ' x = 2 x với mọi x ∈ R . Tính tích phân I = ∫ 0 1 xf ' x dx .
A. I = 1
B. I = 2
C. I = 1/3
D. I = 2/3
Cho số thực a>0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).(fa-x) = 1 Tính tích phân ∫ 0 1 1 1 + f ( x ) d x
A. I = a/2
B. I = a
C. I = 2a/3
D. I = a/3
Cho số thực a>0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).f(a – x) = 1, ∀ x ∈ [0;a]. Tính tích phân I = ∫ 0 a 1 1 + f ( x ) d x
Đáp án A
Phương pháp : Sử dụng phương pháp đổi biến, đặt x = a – t.
Cách giải : Đặt x = a – t => dx = –dt. Đổi cận
=>