Những câu hỏi liên quan
Quang Anh Vũ
28 tháng 2 lúc 16:53

`4)(2x^3+3x)/(7-2x)>\sqrt{2-x}(x<=2)`

`<=>(2x^3+3x^2)/(7-2x)-1>\sqrt{2-x}-1`

`<=>(2x^3+3x^2+2x-7)/(7-2x)-((\sqrt{2-x}-1)(\sqrt{2-x}+1))/(\sqrt{2-x}+1)>0`

`<=>(2x^3-2x^2+5x^2-5x+7x-7)/(7-2x)-(1-x)/(\sqrt{2-x}+1)>0`

`<=>((x-1)(2x^2+5x+7))/(7-2x)+(x-1)/(\sqrt{2-x}+1)>0`

`<=>(x-1)((2x^2+5x+7)/(7-2x)+1/(\sqrt{2-x}+1))>0`

`<=>x>1` do `x<=2=>7-2x>0,2x^2+5x+7>0 AA x,\sqrt{2-x}>0,1>0`

`=>(2x^2+5x+7)/(7-2x)+1/(\sqrt{2-x}+1)>0`

`=>1<x<=2`

Bình luận (0)
Quang Anh Vũ
28 tháng 2 lúc 17:06

Câu 1:

$\begin{cases}14x^2-21y^2-6x+45y-4=0\\35x^2+28y^2+41x-122y+56=0\\\end{cases}$

`<=>` $\begin{cases}686x^2-1028y^2-174x+294y-196=0\\525x^2+420y^2+615x-1830y+840\\\end{cases}$

Lấy pt đầu trừ pt dưới

`<=>161x^2+483y-1127-483xy-1449y+3381+218x+654y-1519=0`

`<=>161x(x+3y-7)-483y(x+3y-7)+218(x+3y-7)=0`

`<=>(x+3y-7)(161x-483y+218)=0`

Đến đây chia 2 th ta được `(x,y)=(-2,3),(1,2)`

Bình luận (5)
Justasecond
28 tháng 2 lúc 17:50

Câu 5:

\(2\ge a^2+c^2+b^2\ge2\left|ac\right|+b^2\ge2\left|ac\right|\Rightarrow-1\le ac\le1\)

\(2\ge a^2+b^2+c^2\Leftrightarrow2-2ab-2bc+2ca\ge a^2+b^2+c^2-2ab-2bc+2ca\)

\(\Rightarrow2-2ab-2bc+2ca\ge\left(a+c-b\right)^2\ge0\)

\(\Rightarrow1-ab-bc+ca\ge0\)

\(\Rightarrow-ab-bc\ge-ca-1\)

\(\Rightarrow P\ge2021ca-ca-1=2020ca-1\ge-2020-1=-2021\)

\(P_{min}=-2021\) khi \(\left(a;b;c\right)=\left(1;0;-1\right)\) hoặc \(\left(-1;0;1\right)\)

 

Bình luận (0)
Quoc Tran Anh Le

[CUỘC THI TRÍ TUỆ VICE]

Trang fanpage của cuộc thi đã có 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?

Cuộc thi Trí tuệ VICE | Facebook

Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>

Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 100.000đ nhé!

--------------------------------------------

[Toán.C116 _ 20.2.2021]

undefined

[Toán.C117+118 _ 20.2.2021]

undefined

 

Nguyễn Trọng Chiến
20 tháng 2 lúc 23:31

Bài 5

Giả sử diện tích tam giác ABC là số nguyên. 

\(\Rightarrow S_{ABC}=\dfrac{1}{2}sinA\cdot AB\cdot AC\) là số nguyên 

\(\Rightarrow sinA\cdot AB\cdot AC⋮2\) \(\Rightarrow AB\cdot AC⋮2\)( vì \(sinA< 1\) ) vô lí vì AB,AC,BC đều là số nguyên tố \(\Rightarrow\) giả sử sai Vậy ...

Bình luận (0)
Ngố ngây ngô

[CUỘC THI TRÍ TUỆ VICE]

Trang fanpage của cuộc thi đã có 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?

Cuộc thi Trí tuệ VICE | Facebook

Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>

Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 100.000đ nhé!

--------------------------------------------

[Toán.C114 _ 20.2.2021]

undefined

Nguyễn Trọng Chiến
20 tháng 2 lúc 9:04

Ta cần chứng minh \(\dfrac{a^3}{1+b^2}+\dfrac{b^3}{1+a^2}\ge1\)

\(\Leftrightarrow\dfrac{a^3}{ab+b^2}+\dfrac{b^3}{ab+a^2}\ge1\) \(\Leftrightarrow\dfrac{a^3}{b\cdot\left(a+b\right)}+\dfrac{b^3}{a\left(a+b\right)}\ge1\) \(\Leftrightarrow\dfrac{a^4+b^4}{ab\left(a+b\right)}\ge1\Leftrightarrow\dfrac{a^4+b^4}{a+b}\ge1\) 

Áp dụng bđt Cô-si vào 2 số a,b>0 :

 \(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\a^4+b^4\ge2a^2b^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2\cdot\left(a^2+b^2\right)\ge\left(a+b\right)^2\\2\cdot\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\end{matrix}\right.\) \(\Rightarrow a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(a+b\right)^4}{8}\)

\(\Rightarrow\dfrac{a^4+b^4}{a+b}\ge\dfrac{\left(a+b\right)^3}{8}\ge\dfrac{\left(2\sqrt{ab}\right)^3}{8}=1\) 

Dấu bằng xảy ra \(\Leftrightarrow a=b=1\) Vậy...

Bình luận (0)
Trương Phạm Đăng Khoa
20 tháng 2 lúc 9:22

Ta có:ab=1⇔a=\(\dfrac{1}{b}\)

Thay a=\(\dfrac{1}{b}\) vào \(\dfrac{a^3}{1+b^2}+\dfrac{b^3}{1+a^2}\) có

\(\dfrac{\left(\dfrac{1}{b}\right)^3}{1+b^2}+\dfrac{b^3}{1+\left(\dfrac{1}{b}\right)^2}\)=\(\dfrac{\left(\dfrac{1}{b}\right)^3}{1+b^2}+\dfrac{b^3}{\dfrac{b^2+1}{b^2}}\)=\(\dfrac{\left(\dfrac{1}{b}\right)^3}{1+b^2}+\dfrac{b^5}{1+b^2}\)=\(\dfrac{\left(\dfrac{1}{b}\right)^3+b^5}{1+b^2}\)=\(\dfrac{\dfrac{1+b^8}{b^3}}{1+b^2}\)

Mà b là số thực dương nên \(\dfrac{\dfrac{1+b^8}{b^3}}{1+b^2}\)≥1

vậy \(\dfrac{a^3}{1+b^2}+\dfrac{b^3}{1+a^2}\)≥1

Bình luận (0)

Theo BĐT Cô - si có : \(a+b\ge2\sqrt{ab}=2\Rightarrow\left(a+b\right)^3\ge8\)

Áp dụng BĐT Svac-xơ ta có :

\(\dfrac{a^3}{1+b^2}+\dfrac{b^3}{1+a^2}=\dfrac{a^4}{a+ab^2}+\dfrac{b^4}{b+a^2b}\)

\(\ge\dfrac{\left(a^2+b^2\right)^2}{a+b+ab.\left(a+b\right)}\ge\dfrac{\left[\dfrac{\left(a+b\right)^2}{2}\right]^2}{a+b+a+b}\) \(=\dfrac{\dfrac{\left(a+b\right)^4}{4}}{2.\left(a+b\right)}=\dfrac{\left(a+b\right)^3}{8}\ge\dfrac{8}{8}=1\)

Dấu "=" xảy ra khi \(a=b=1\)

Bình luận (0)
Quoc Tran Anh Le

[CUỘC THI TRÍ TUỆ VICE]

Trang fanpage của cuộc thi đã có 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?

Cuộc thi Trí tuệ VICE | Facebook

Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>

Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 200.000đ nhé!

--------------------------------------------

[Toán.C125+126 _ 22.2.2021]

undefined

[Toán.C127 _ 22.2.2021]

undefined

Hồng Quang
22 tháng 2 lúc 10:07

Bài 286: Bất đẳng thức neibizt khá nổi tiếng :D 

Bđt <=> \(\dfrac{a}{b+c}+\dfrac{1}{2}+\dfrac{b}{c+a}+\dfrac{1}{2}+\dfrac{c}{a+b}+\dfrac{1}{2}\ge\dfrac{9}{2}\)

\(\Leftrightarrow\left(2a+2b+2c\right)\left(\dfrac{1}{a+b}+\dfrac{1}{c+a}+\dfrac{1}{b+c}\right)\ge9\) ( Có thể đơn giản hóa bất đẳng thức bằng việc đặt biến phụ )

Đặt: \(\left\{{}\begin{matrix}x=b+c\\y=c+a\\z=a+b\end{matrix}\right.\) khi đó ta có: \(\left\{{}\begin{matrix}a=\dfrac{y+z-x}{2}\\b=\dfrac{z+x-y}{2}\\c=\dfrac{x+y-z}{2}\end{matrix}\right.\) Bất đẳng thức trở thành: \(\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\) ( luôn đúng theo AM-GM )

Vậy bất đẳng thức đã được chứng minh. Dấu "=" xảy ra tại a=b=c

Bình luận (0)
Hồng Phúc
22 tháng 2 lúc 12:25

C286.(Cách khác)

Áp dụng BĐT BSC và BĐT \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\):

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)

\(=\dfrac{a^2}{ab+ca}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{\left(a+b+c\right)^2}{\dfrac{2}{3}\left(a+b+c\right)^2}=\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c\)

Bình luận (0)
Viêt Thanh Nguyễn Hoàng
22 tháng 2 lúc 18:20

undefined

Bình luận (1)
Quoc Tran Anh Le

[CUỘC THI TRÍ TUỆ VICE]

Trang fanpage của cuộc thi đã có hơn 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?

Cuộc thi Trí tuệ VICE | Facebook

Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>

Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 500.000đ nhé!

--------------------------------------------

[Văn.C176 _ 25.2.2021]

Các bạn có suy nghĩ gì về bức ảnh dưới đây? 

undefined

P/s: Những bài đăng tới về văn học, mình sẽ thống nhất với thầy để trao một giải thưởng nho nhỏ cho các bạn nhé :)

 

Minh Nguyệt
25 tháng 2 lúc 20:15

Mọi cố gắng đều không bao giờ vô nghĩa, cố gắng học, cố gắng làm, tuy sự cố gắng có thể chưa nhiều nhưng ''tích tiểu thành đại'' một lúc nào đó nó sẽ thành công. Từ bức ảnh này có thể thấy, mỗi con số vô cùng nhỏ nhưng số mũ lại rất lớn, làm cho kết quả cũng lớn theo. Số mũ này còn tượng trưng cho 365 ngày trong năm, mỗi ngày là con số kia, sau 1 năm, kết quả đã lớn đến nhường nào. Đôi khi trong quá trình cố gắng, gặp khó khăn, nếu chúng ta từ bỏ, thì cố gắng từ trước đến này cũng bằng không. Bản thân mình trước kia cũng từng là một đứa nghiện game, truyện tranh đến mức bị mẹ dọa cho nghỉ học, bản thân mình lúc đó cũng chưa nghĩ gì nhiều, nhưng thấy kết quả học chưa tốt, bố mẹ lo lắng, mình đã bỏ qua tất cả, cố gắng học từng chút một, có thể là giờ cái sự cố gắng của mình nó chưa lớn như người khác nhưng mình chưa từ bỏ nó một lần nào, mình hi vọng sẽ có một ngày nào mình thành công trên con đường mình đã chọn. Nói chung lại, cố gắng sẽ khiến bản thân ta thay đổi, thành công sẽ đến gần hơn 

P/s lại viết ''ngựa ngựa'' đây :)))

 

Bình luận (10)

Cuộc thi có vẻ rất vui và thú vị :^

Bình luận (1)
Hồng Quang
25 tháng 2 lúc 20:18

:3 hi vọng cuộc thi sẽ mở rộng và có nhiều môn học hơn 

Bình luận (2)
Ngố ngây ngô

[CUỘC THI TRÍ TUỆ VICE]

Trang fanpage của cuộc thi đã có 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?

 Cuộc thi Trí tuệ VICE | Facebook

Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>

Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 500.000đ nhé!

--------------------------------------------

[Toán.C128 _ 22.2.2021]

[Toán.C129 _ 22.2.2021]

[Toán.C129 _ 22.2.2021]

Nguyễn Trọng Chiến
22 tháng 2 lúc 21:42

Bài 129:

ĐKXĐ: \(x^2-y+1\ge0\)\(\left\{{}\begin{matrix}4x^2-2x+y^2+y-4xy=0\left(1\right)\\x^2-x+y=\left(y-x+3\right)\sqrt{x^2-y+1}\left(2\right)\end{matrix}\right.\)

Từ (1) \(\Rightarrow\left(2x-y\right)^2-\left(2x-y\right)=0\Leftrightarrow\left(2x-y\right)\left(2x-y-1\right)=0\Leftrightarrow\left[{}\begin{matrix}y=2x\\y=2x-1\end{matrix}\right.\)

Nếu y=2x Thay vào (2) ta được: 

\(\Rightarrow x^2-x+2x=\left(2x-x+3\right)\sqrt{x^2-2x+1}\Leftrightarrow x^2+x=\left(x+3\right)\left|x-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x=\left(x+3\right)\left(1-x\right)\left(x< 1\right)\left(3\right)\\x^2+x=\left(x+3\right)\left(x-1\right)\left(x\ge1\right)\left(4\right)\end{matrix}\right.\) 

Từ (3) \(\Rightarrow x^2+x=x-x^2+3-3x\Leftrightarrow2x^2+3x-3=0\) \(\Leftrightarrow x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}-\dfrac{9}{16}-\dfrac{3}{2}=0\Leftrightarrow\left(x-\dfrac{3}{4}\right)^2=\dfrac{33}{16}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{4}\left(L\right)\\x=\dfrac{3-\sqrt{33}}{4}\left(TM\right)\end{matrix}\right.\)\(\Rightarrow y=\) \(2\cdot\left(\dfrac{3-\sqrt{33}}{4}\right)=\dfrac{3-\sqrt{33}}{2}\)

Từ (4) \(\Rightarrow x^2+x=x^2-x+3x-3\Leftrightarrow-x=-3\Leftrightarrow x=3\left(TM\right)\)\(\Rightarrow y=6\)

Nếu y=2x+1 Thay vào (2) ta được: 

\(\Rightarrow x^2-x+2x+1=\left(2x+1-x+3\right)\sqrt{x^2-2x-1+1}\Leftrightarrow x^2+x+1=\left(x+4\right)\sqrt{x^2-2x}\left(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.;x\ge-4\right)\)

\(\Rightarrow x^2+x+1-\left(x+4\right)\sqrt{x^2-2x}=0\Leftrightarrow2x^2+2x+2-2x\sqrt{x^2-2x}-4\sqrt{x^2-2x}=0\Leftrightarrow x^2-2x+x^2+4-2x\sqrt{x^2-2x}+4x-4\sqrt{x^2-2x}=2\Leftrightarrow\left(-\sqrt{x^2-2x}+x+2\right)^2=2\) \(\Leftrightarrow\left[{}\begin{matrix}-\sqrt{x^2-2x}+x+2=\sqrt{2}\left(5\right)\\-\sqrt{x^2-2x}+x+2=-\sqrt{2}\left(6\right)\end{matrix}\right.\)

Từ (5) \(\Rightarrow\sqrt{x^2-2x}=x+2-\sqrt{2}\Rightarrow x^2-2x=x^2+\left(2-\sqrt{2}\right)^2-2x\left(2-\sqrt{2}\right)\Leftrightarrow2x\left(2-\sqrt{2}-2\right)=4+2-4\sqrt{2}\Leftrightarrow-2\sqrt{2}x=6-4\sqrt{2}\Leftrightarrow x=-\dfrac{3\sqrt{2}}{2}+2\left(TM\right)\) \(\Rightarrow y=2\left(\dfrac{-3\sqrt{2}}{2}+2\right)+1=-3\sqrt{2}+5\)

Từ (6) \(\Rightarrow\sqrt{x^2-2x}=x+2+\sqrt{2}\Rightarrow x^2-2x=x^2+\left(2+\sqrt{2}\right)^2+2x\left(2+\sqrt{2}\right)\Leftrightarrow2x\left(2+\sqrt{2}-2\right)=6+4\sqrt{2}\Leftrightarrow2\sqrt{2}x=6+4\sqrt{2}\Leftrightarrow x=\dfrac{3\sqrt{2}}{2}+2\left(TM\right)\)

 \(\Rightarrow y=2\left(\dfrac{3\sqrt{2}}{2}+2\right)+1=3\sqrt{2}+5\)

Vậy...

Bình luận (1)
Quoc Tran Anh Le

[CUỘC THI TRÍ TUỆ VICE]

Trang fanpage của cuộc thi đã có 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?

Cuộc thi Trí tuệ VICE | Facebook

Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>

Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 100.000đ nhé!

--------------------------------------------

[Văn.C115 _ 20.2.2021]

Các bạn có suy nghĩ gì khi thấy bức ảnh sau?

undefined

Minh Nguyệt
20 tháng 2 lúc 16:05

Việc bây giờ có những bộ phận anti fan quá khích lập group anti đã không còn quá xa lạ với mọi người. Ở đây mình muốn nói đến việc anti bây giờ đôi khi không cần ghét bất cứ 1 người nổi tiếng, họ cũng lập gr anti cả những người không nổi tiếng như trên ảnh trong khi họ không làm gì sai cả. Không chỉ là những gr anti, họ còn nói những từ ngữ, chế ảnh, hành động không mấy lành mạnh. Những việc làm quá khích như vậy ảnh hưởng lớn đến tinh thần, hình ảnh của các bạn 2k5 nói chung và khiến cho các bạn nhỏ tuổi có cái nhìn không tốt. Chúng ta cần lên tiếng phản đối những bộ phận anti không lành mạnh và luôn xây dựng cho mình hình ảnh đẹp để chứng minh những điều họ làm là sai 

P/s viết ''ngựa ngựa'' 1 tí ko biết có sao ko :)))

Bình luận (3)
Quoc Tran Anh Le

[CUỘC THI TRÍ TUỆ VICE]

Trang fanpage của cuộc thi đã có hơn 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?

Cuộc thi Trí tuệ VICE | Facebook

Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>

Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 500.000đ nhé!

--------------------------------------------

[Toán.C131-136 _ 23.2.2021]

undefined

[Toán.C137 _ 23.2.2021]

undefined

PIKACHU
23 tháng 2 lúc 20:39

c131-136 nhỏ ko đọc đc

 

Bình luận (0)
Quoc Tran Anh Le

[CUỘC THI TRÍ TUỆ VICE]

Trang fanpage của cuộc thi đã có 1.000 like đó, bạn đã like để nhận tin mới nhất chưa?

Cuộc thi Trí tuệ VICE | Facebook

Muốn đề xuất câu hỏi? Các bạn hãy hỏi trực tiếp trên hoc24 nha :>

Trả lời ngay những câu hỏi dưới đây tích cực để có cơ hội nhận giải thưởng lên đến 200.000đ nhé!

--------------------------------------------

[Toán.C119 _ 21.2.2021]

undefined

[Toán.C120 _ 21.2.2021]

undefined

[Toán.C121 _ 21.2.2021]

undefined

[Toán.C122 _ 21.2.2021]

undefined

Nguyễn Trọng Chiến
21 tháng 2 lúc 12:05

1: ĐKXĐ: a,b>0, a\(\ne b\)

\(\Rightarrow Q=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^3+2a\sqrt{a}+b\sqrt{b}}{3\sqrt{a}\left(a\sqrt{a}+b\sqrt{b}\right)}+\dfrac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}=\dfrac{a\sqrt{a}-3a\sqrt{b}+3b\sqrt{a}-b\sqrt{b}+2a\sqrt{a}+b\sqrt{b}}{3\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\dfrac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\) \(=\dfrac{3\sqrt{a}\left(a-\sqrt{ab}+b\right)}{3\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\dfrac{1}{\sqrt{a}+\sqrt{b}}=\dfrac{1}{\sqrt{a}+\sqrt{b}}-\dfrac{1}{\sqrt{a}+\sqrt{b}}=0\) 

\(\Rightarrow Q\) ko phụ thuộc vào a,b Vậy...

Bình luận (0)
Nguyễn Trọng Chiến
21 tháng 2 lúc 12:30

2: Ta có \(1\ge x+y\ge2\sqrt{xy}\Rightarrow xy\le\dfrac{1}{4}\) 

\(\Rightarrow P=\dfrac{x+y}{xy}\cdot\sqrt{x^2y^2+\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}}\ge\dfrac{2\sqrt{xy}}{xy}\cdot\sqrt{17}\cdot\sqrt[34]{\dfrac{x^2y^2}{16^{16}}}=\sqrt{17}\cdot\dfrac{2}{\sqrt{xy}}\cdot\sqrt[17]{\dfrac{xy}{16^8}}\) \(=\sqrt{17}\cdot\sqrt[17]{\dfrac{2^{17}}{\sqrt{x^{17}y^{17}}}\cdot\dfrac{\sqrt{x^2y^2}}{2^{32}}=\sqrt{17}\cdot\sqrt[17]{\dfrac{1}{\sqrt{x^{15}y^{15}}\cdot2^{15}}}\ge\sqrt{17}\cdot\sqrt[17]{\dfrac{1}{\sqrt{\dfrac{1}{4^{15}}}\cdot2^{15}}}=\sqrt{ }17}\)

Dấu  = xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\) Vậy...

Bình luận (2)
Cỏ Xanh so cute
21 tháng 2 lúc 11:39

toán mấy đấy aj??

Bình luận (2)

Khoá học trên OLM của Đại học Sư phạm HN