Tìm x biết
a, 5x-5^2=10
b, 9x-2:3^2=3^4
c, 10x+2^2 nhân 5 = 10^2
Tìm x biết
a) -2x(x+3)+x(2x-1)=10
b) (2/3x)(9x/2+1/4)-(3x2x+2)=3
a: -2x(x+3)+x(2x-1)=10
=>-2x^2-6x+2x^2-x=10
=>-7x=10
=>x=-10/7
b: Sửa đề: 2/3x(9/2x+1/4)-(3x^2+2)=3
=>3x^2+1/6x-3x^2-2=3
=>1/6x-2=3
=>x=30
Tìm x, biết:
a) 5.2²+(x+3)=5²
b)2³+(x-3²)=5³-4³
c)4.(x-5)-2³=2⁴.3
d)5.(x+7)-10=2³.5
e)7²-7.(13-x)=14
f)5x-5²=10
g)9x-2.3²=3⁴
h)10x+2².5=10²
i)125-5.(4+x)=15
j)2⁶+(5+x)=3⁴
a) 5.2² + (x + 3) = 5²
5.4 + x + 3 = 25
20 + x + 3 = 25
x + 23 = 25
x = 25 - 23
x = 2
b) 2³ + (x - 3²) = 5³ - 4³
8 + (x - 9) = 125 - 64
8 + x - 9 = 61
x - 1 = 61
x = 61 + 1
x = 62
c) 4.(x - 5) - 2³ = 2⁴.3
4x - 20 - 8 = 16.3
4x - 28 = 48
4x = 48 + 28
4x = 76
x = 76 : 4
x = 19
d) 5.(x + 7) - 10 = 2³.5
5x + 35 - 10 = 8.5
5x + 25 = 40
5x = 40 - 25
5x = 15
x = 15 : 5
x = 3
e) 7² - 7.(13 - x) = 14
49 - 91 + 7x = 14
7x - 42 = 14
7x = 14 + 42
7x = 56
x = 56 : 7
x = 8
a) \(5\cdot2^2+\left(x+3\right)=5^2\)
\(\Rightarrow x+3=5^2-5\cdot2^2\)
\(\Rightarrow x+3=25-5\cdot4\)
\(\Rightarrow x+3=5\)
\(\Rightarrow x=5-3\)
\(\Rightarrow x=2\)
b) \(2^3+\left(x-3^2\right)=5^3-4^3\)
\(\Rightarrow8+\left(x-9\right)=125-64\)
\(\Rightarrow8+x-9=61\)
\(\Rightarrow x-1=61\)
\(\Rightarrow x=61+1\)
\(\Rightarrow x=62\)
c) \(4\left(x-5\right)-2^3=2^4\cdot3\)
\(\Rightarrow4\left(x-5\right)=2^4\cdot3+2^3\)
\(\Rightarrow4\cdot\left(x-5\right)=16\cdot3+8\)
\(\Rightarrow4\cdot\left(x-5\right)=56\)
\(\Rightarrow x-5=56:4\)
\(\Rightarrow x-5=14\)
\(\Rightarrow x=19\)
d) \(5\left(x+7\right)-10=2^3\cdot5\)
\(\Rightarrow5\left(x+7\right)=8\cdot5+10\)
\(\Rightarrow5\left(x+7\right)=40+10\)
\(\Rightarrow5\left(x+7\right)=50\)
\(\Rightarrow x+7=10\)
\(\Rightarrow x=10-7\)
\(\Rightarrow x=3\)
e) \(7^2-7\left(13-x\right)=14\)
\(\Rightarrow7\left(13-x\right)=7^2-14\)
\(\Rightarrow7\left(13-x\right)=49-14\)
\(\Rightarrow7\left(13-x\right)=35\)
\(\Rightarrow13-x=5\)
\(\Rightarrow x=13-5\)
\(\Rightarrow x=8\)
f) \(5x-5^2=10\)
\(\Rightarrow5x=10+5^2\)
\(\Rightarrow5x=10+25\)
\(\Rightarrow5x=35\)
\(\Rightarrow x=\dfrac{35}{5}\)
\(\Rightarrow x=7\)
g) \(9x-2\cdot3^2=3^4\)
\(\Rightarrow9x=3^4+2\cdot3^2\)
\(\Rightarrow9x=81+2\cdot9\)
\(\Rightarrow9x=99\)
\(\Rightarrow x=\dfrac{99}{9}\)
\(\Rightarrow x=11\)
h) \(10x+2^2\cdot5=10^2\)
\(\Rightarrow10x=10^2-2^2\cdot5\)
\(\Rightarrow10x=100-4\cdot5\)
\(\Rightarrow10x=80\)
\(\Rightarrow x=\dfrac{80}{10}\)
\(\Rightarrow x=8\)
i) \(125-5\left(4+x\right)=15\)
\(\Rightarrow5\left(4+x\right)=125-5\)
\(\Rightarrow5\left(4+x\right)=120\)
\(\Rightarrow4+x=\dfrac{120}{5}\)
\(\Rightarrow4+x=24\)
\(\Rightarrow x=24-4\)
\(\Rightarrow x=20\)
j) \(2^6+\left(5+x\right)=3^4\)
\(\Rightarrow5+x=3^4-2^6\)
\(\Rightarrow5+x=81-64\)
\(\Rightarrow5+x=17\)
\(\Rightarrow x=17-5\)
\(\Rightarrow x=12\)
f) 5x - 5² = 10
5x - 25 = 10
5x = 10 + 25
5x = 35
x = 35 : 5
x = 7
g) 9x - 2.3² = 3⁴
9x - 2.9 = 81
9x - 18 = 81
9x = 81 + 18
9x = 99
x = 99 : 9
x = 11
h) 10x - 2².5 = 10²
10x - 4.5 = 100
10x - 20 = 100
10x = 100 + 20
10x = 120
x = 120 : 10
x = 12
i) 125 - 5.(4 + x) = 15
5.(4 + x) = 125 - 15
5.(4 + x) = 110
4 + x = 110 : 5
4 + x = 22
X = 22 - 4
x = 18
j) 2⁶ + (5 + x) = 3⁴
64 + 5 + x = 81
69 + x = 81
x = 81 - 69
x = 12
Tìm x
a) (2x - 3)(x^2 + 2) - 2(x + 1)^3 - 9x^2 = -5
b) 3(x - 2) - x^2 + 4 = 0
c) x^3 - 5x^2 - 10x= -50
d) x^3 + 9x= 6x^2
e) 2x^2 - 5x + 3 = 0
f) x^2 - x - 2= 0
M(x) = 9x^5 - x^3 +4x^2 +5x +9 - 9x^5 - 6x^2 - 2 +3x^4
N(x) = 10x^2 +5x^3 - 3x^4 - 3x^3 - 8x - x^3 +9x - 7
a) Thu gọn mỗi đa thức trên rồi sắp xếp chúng theo lũy thừa giảm dần của biến, tìm hệ số cao nhất, hệ số tự do của từng đa thức
b) Tính A(x) = M(x) + N(x) và B(x) = M(x) - N(x)
c) TÌm nghiệm của đa thức A(x)
a)\(M\left(x\right)=3x^4-x^3-2x^2+5x+7\)
\(N\left(x\right)=-3x^4+x^3+10x^2+x-7\)
b)\(A\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(=>A\left(x\right)=3x^4-x^3-2x^2+5x+7-3x^4+x^3+10x^2+x-7\)
\(A\left(x\right)=8x^2+6x\)
\(B\left(x\right)=3x^4-x^3-2x^2+5x+7+3x^4-x^3-10x^2-x+7\)
\(B\left(x\right)=6x^4-2x^3-12x^2+x+14\)
c)cho A(x) = 0
\(=>8x^2+6x=0=>x\left(8x+6\right)=0=>\left[{}\begin{matrix}x=0\\8x=-6\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{4}\end{matrix}\right.\)
Bài 1 : Phân tích đa thức thành nhân tử
a) 5x^2y-20xy^2
b) 1-8x+16x^2-y^2
c) 4x-4-x^2
d) x^3-2x^2+x-xy^2
e)27-3x^2
f) 2x^2+4x+2-2y^2
Bài 2: tìm x, biết
a) x^2(x-2023)-2023+x=0
b) -x(x-4)+(2x^3-4x^2-9x):x=0
c) x^2+2x-3x-6=0
d) 3x(x-10)-2x+20=0
Bài 1
a) 5x²y - 20xy²
= 5xy(x - 4y)
b) 1 - 8x + 16x² - y²
= (1 - 8x + 16x²) - y²
= (1 - 4x)² - y²
= (1 - 4x - y)(1 - 4x + y)
c) 4x - 4 - x²
= -(x² - 4x + 4)
= -(x - 2)²
d) x³ - 2x² + x - xy²
= x(x² - 2x + 1 - y²)
= x[(x² - 2x+ 1) - y²]
= x[(x - 1)² - y²]
= x(x - 1 - y)(x - 1 + y)
= x(x - y - 1)(x + y - 1)
e) 27 - 3x²
= 3(9 - x²)
= 3(3 - x)(3 + x)
f) 2x² + 4x + 2 - 2y²
= 2(x² + 2x + 1 - y²)
= 2[(x² + 2x + 1) - y²]
= 2[(x + 1)² - y²]
= 2(x + 1 - y)(x + 1 + y)
= 2(x - y + 1)(x + y + 1)
Bài 2:
a: \(x^2\left(x-2023\right)+x-2023=0\)
=>\(\left(x-2023\right)\left(x^2+1\right)=0\)
mà \(x^2+1>=1>0\forall x\)
nên x-2023=0
=>x=2023
b:
ĐKXĐ: x<>0
\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)
=>\(-x\left(x-4\right)+2x^2-4x-9=0\)
=>\(-x^2+4x+2x^2-4x-9=0\)
=>\(x^2-9=0\)
=>(x-3)(x+3)=0
=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
c: \(x^2+2x-3x-6=0\)
=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)
=>\(x\left(x+2\right)-3\left(x+2\right)=0\)
=>(x+2)(x-3)=0
=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
d: 3x(x-10)-2x+20=0
=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)
=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)
=>\(\left(x-10\right)\left(3x-2\right)=0\)
=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)
Câu 1:
a: \(5x^2y-20xy^2\)
\(=5xy\cdot x-5xy\cdot4y\)
\(=5xy\left(x-4y\right)\)
b: \(1-8x+16x^2-y^2\)
\(=\left(16x^2-8x+1\right)-y^2\)
\(=\left(4x-1\right)^2-y^2\)
\(=\left(4x-1-y\right)\left(4x-1+y\right)\)
c: \(4x-4-x^2\)
\(=-\left(x^2-4x+4\right)\)
\(=-\left(x-2\right)^2\)
d: \(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1-y\right)\left(x-1+y\right)\)
e: \(27-3x^2\)
\(=3\left(9-x^2\right)\)
\(=3\left(3-x\right)\left(3+x\right)\)
f: \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x+1+y\right)\left(x+1-y\right)\)
Bài 2
a) x²(x - 2023) - 2023 + x = 0
x²(x - 2023) - (x - 2023) = 0
(x - 2023)(x² - 1) = 0
x - 2023 = 0 hoặc x² - 1 = 0
*) x - 2023 = 0
x = 2023
*) x² - 1 = 0
x² = 1
x = 1 hoặc x = -1
Vậy x = -1; x = 1; x = 2023
b) -x(x - 4) + (2x³ - 4x² - 9x) : x = 0
-x² + 4x + 2x² - 4x - 9 = 0
x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
Vậy x = 3; x = -3
c) x² + 2x - 3x - 6 = 0
(x² + 2x) - (3x + 6) = 0
x(x + 2) - 3(x + 2) = 0
(x + 2)(x - 3) = 0
x + 2 = 0 hoặc x - 3 = 0
*) x + 2 = 0
x = -2
*) x - 3 = 0
x = 3
Vậy x = -2; x = 3
d) 3x(x - 10) - 2x + 20 = 0
3x(x - 10) - (2x - 20) = 0
3x(x - 10) - 2(x - 10) = 0
(x - 10)(3x - 2) = 0
x - 10 = 0 hoặc 3x - 2 = 0
*) x - 10 = 0
x = 10
*) 3x - 2 = 0
3x = 2
x = 2/3
Vậy x = 2/3; x = 10
Tìm nghiệm của các đa thức sau:
1)F(x)= 9x mũ 2+8-x1
2) G(x)= x mũ 2-10x+9
3)H(x)= |2x-3|-5
4)M(x)= |5x mũ 2-10|
Cám ơn
1/ Thực hiện phép nhân :
a) x2 ( 5x3 - x - \(\dfrac{1}{2}\))
b) ( 3xy - x2 + y ) \(\dfrac{2}{3}\)x2y
c) x2 ( 4x3 - 5xy + 2x ) ( -\(\dfrac{1}{2}\) xy )
2/ Tìm x, biết
a) 3x( 12x - 4 ) - 9x (4x - 3 ) = 30
b ) x( 5 - 2x ) + 2x ( x - 1 )= 15
2.
a. 3x(12x - 4) - 9x(4x - 3) = 30
<=> 36x2 - 12x - 36x2 + 27x = 30
<=> 36x2 - 36x2 - 12x + 27x = 30
<=> 15x = 30
<=> x = 2
b. x(5 - 2x) + 2x(x - 1) = 15
<=> 5x - 2x2 + 2x2 - 2x = 15
<=> -2x2 + 2x2 + 5x - 2x = 15
<=> 3x = 15
<=> x = 5
a) x2 ( 5x3 - x - 2323x2y= 6969x3y2- 2323x4y+ 2323x2y2
c) x2 ( 4x3 - 5xy + 2x ) ( -
thực hiện phép tính :
a) 5x+10/10xy^2 nhân 12x/x+2
b) x-4/3x-1 nhân 9x-3/x^2-16
c)4x+2/(x+4)^2/ chia 3(x+3)/x+4
d)5x-5/3x+3 chia x-1/x+1
a: \(=\dfrac{5\left(x+2\right)}{10xy^2}\cdot\dfrac{12x}{x+2}=\dfrac{60x}{10xy^2}=\dfrac{6}{y^2}\)
b: \(=\dfrac{x-4}{3x-1}\cdot\dfrac{3\left(3x-1\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{3}{x+4}\)
c: \(=\dfrac{2\left(2x+1\right)}{\left(x+4\right)^2}\cdot\dfrac{\left(x+4\right)}{3\left(x+3\right)}=\dfrac{2\left(2x+1\right)}{3\left(x+3\right)\left(x+4\right)}\)
d: \(=\dfrac{5\left(x-1\right)}{3\left(x+1\right)}\cdot\dfrac{x+1}{x-1}=\dfrac{5}{3}\)
tìm x biết
a,2x+3(x-1)(x+1)=5x(x+1)
b,,(8-5x)(x+2)+4(x-2)(x+1)=(2+x)(2-x)
c,, 4(x-1)(x+5)-(x+2)(x+5)=3(x-1)(x+2)
Lời giải:
a. $2x^2+3(x-1)(x+1)=5x(x+1)$
$\Leftrightarrow 2x^2+3x^2-3=5x^2+5x$
$\Leftrightarrow 5x^2-3=5x^2+5x$
$\Leftrightarrow 5x=-3$
$\Leftrightarrow x=\frac{-3}{5}$
b.
PT $\Leftrightarrow (-5x^2-2x+16)+4(x^2-x-2)=4-x^2$
$\Leftrightarrow -x^2-6x+8=4-x^2$
$\Leftrightarrow -6x+8=4$
$\Leftrightarrow -6x=-4$
$\Leftrightarrow x=\frac{2}{3}$
c.
PT $\Leftrightarrow 4(x^2+4x-5)-(x^2+7x+10)=3(x^2+x-2)$
$\Leftrightarrow 4x^2+16x-20-x^2-7x-10=3x^2+3x-6$
$\Leftrightarrow 3x^2+9x-30=3x^2+3x-6$
$\Leftrightarrow 6x=24$
$\Leftrightarrow x=4$