Câu 6:
Cho AB là một đường kính của đường tròn (O;R = 2cm), vẽ dây AC = 2,4cm,
tia BC cắt tiếp tuyến tại A của (O) ở M . Độ dài đoạn AM = cm
Hộ mk cái nhé!! ai làm nhanh sẽ dc tick liền
Cho đường tròn tâm O đường kính AB. Trên cùng một nửa đường tròn (O) đường kính AB lấy hai điểm C, D sao cho cung AC nhỏ hơn cung AD. Gọi T là giao điểm của hai đường thẳng CD và AB. Vẽ đường tròn tâm I đường kính TO cắt đường tròn tâm O tại M và N (M nằm trên nửa đường tròn tâm O chứa điểm C). Gọi E là giao điểm của MN và AB. Chứng minh rằng:
1. TM là tiếp tuyến của (O).
2. TM2 = TC. TD
3. 4 điểm O, D, C, E cùng nằm trên một đường tròn.
(mình cần câu 3 thôi)
Câu 1 :
1) Cho đường tròn tâm O bán kính R. Từ điểm D nằm ngoài đường tròn vě hai tiếp tuyến DA và DM đến đường tròn (A và M lần lượt là các tiếp điểm). a) Chứng minh 4 điểm A, ), M, D cùng thuộc một đường tròn. b) Kể đường kính AB của (O). Tia phân giác của góc MOB cắt tia DM tại C. Chứng minh tam giác DOC là tam giác vuông.
2)Một chiếc máy bay đang bay song song với mặt đất ở độ cao 15km thì bắt đầu hạ cánh, đường hạ cánh của máy bay tạo với mặt đất một góc 30°. 30 Sau khi tiếp đất, máy bay đi thẳng với vận tốc trung bình là 21km/h để đến điểm trả ách. Tính thời gian từ lúc máy bay tiếp đất đến khi máy bay dừng tại điểm trả khách, biết ang đường từ điểm bắt đầu hạ cánh đến điểm trả khách là 33,5km?
Câu 1:
1:
a: Xét tứ giác OAMD có
\(\widehat{OAM}+\widehat{ODM}=180^0\)
Do đó: OAMD là tứ giác nội tiếp
1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC
2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB
3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)
4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)
5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O
6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD
Cho tam giác ABC(AB=AC) kẻ đường cao AH cắt đường tròn tâm O ngoại tiếp tam giác tại D câu a chứng minh :AD là đường kính câu b tính góc ACD câu c biết AC=AB=20cm,BC=24cm tính bán kính của đường tròn tâm (O)
1. Cho nửa đường tròn (O) đường kính AB=2r.Trên nửa đường tròn lấy một điểm M bất kì. Gọi C là đối điểm đối xứng của của B qua M.Tìm quĩ tích của các điểm C.
2. Cho nửa đường tròn O đường kính AB=2r. Trên nửa đường tròn lấy một điểm M tùy ý. Vẽ tia Ax vuông góc AB. Gọi H,K thể thu từ hình chiếu trên AB,Ax. Khi điểm M chuyển động trên nửa đường tròn O thì trung điểm I của đường thẳng HK chuyển động trên đường nào?
3. Cho đường tròn O đường kính AB=2r. M là một điểm chuyển động trên đường tròn đó.Gọi G là trọng tâm của tam giác MAB. Tìm quĩ tích của các điểm G.
Cho nửa đường tròn tâm O có đường kính AB/2 = R
Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D.
a, CM : góc COD = 90o
b, CM : CD = AC + BD
c)Cm AC.BD=ABmu 2
d)CM OC//BM
e)CM AB la tiep tuyen (o'CD/2)
k)CM MN vuong goc AB
h)xac dinh vi tri diem M de chu vi ACDB co GTNN
Cho đường tròn O. Bán kính R. Đường kính AB dây AC. Biết cách từ O đến AC và BC lần lượt là 6 và 8. Tính AC, BC và bán kính của đường tròn .
Câu 3 (3,0 điểm)
Cho điểm A nằm ngoài đường tròn (O). Qua A vẽ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm).
a) Chứng minh các điểm A, B, C, O cùng thuộc một đường tròn, tìm tâm của đường tròn đó.
b) Vẽ đường kính BE của (O), AE cắt (O) tại F (F khác E). Chứng minh OA BC tại M rồi từ đó suy ra OE2 = OM.OA
c) Gọi G là trung điểm của EF, OG cắt BC tại H. Chứng minh OM.OA = OG.OH và EH là tiếp tuyến của đường tròn (O).
d) Một đường thẳng qua O vuông góc với OA cắt AB, AC tại P và Q. Tìm GTNN của SAPQ
a: Xét tứ giác ABCO có
\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABCO là tứ giác nội tiếp đường tròn đường kính OA
=>A,B,C,O cùng thuộc đường tròn đường kính OA
tâm là trung điểm của OA
b: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại M và M là trung điểm của BC
Xét ΔOCA vuông tại C có CM là đường cao
nên \(OM\cdot OA=OC^2\)
mà OC=OE(=R)
nên \(OE^2=OM\cdot OA\)
c: Ta có: ΔOEF cân tại O
mà OG là đường trung tuyến
nên OG\(\perp\)EF
Xét ΔOGA vuông tại G và ΔOMH vuông tại M có
\(\widehat{GOA}\) chung
Do đó: ΔOGA đồng dạng với ΔOMH
=>\(\dfrac{OG}{OM}=\dfrac{OA}{OH}\)
=>\(OG\cdot OH=OA\cdot OM=OE^2\)
=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
Xét ΔOGE và ΔOEH có
\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)
\(\widehat{GOE}\) chung
Do đó: ΔOGE đồng dạng với ΔOEH
=>\(\widehat{OGE}=\widehat{OEH}\)
=>\(\widehat{OEH}=90^0\)
=>HE là tiếp tuyến của (O)
Cho nữa đường trong o, đường kính AB. C là một điểm thuộc đường tròn o. H là hình chiếu của C tre AB. Qua trung điểm của CH , vẽ đường vuông góc với OC cắt nữa đường tròn tại D và E . Chứng minh rằng AB là tiếp tuyến của đường tròn tâm C bán kính CD.
có cách này nè:
vẽ nữa (O) kia. vẽ đường kính COK.gọi giao điểm của EM vs CK là F. ta có: tam giác CEK nội tiếp (O), có CK là đường kính => tam giác CEK vuông tại E, có đường cao EF => = CF.CK(1)
ta có: tam giác CMF Đồng dạng với tam giác COH(g.g) => CM/ OC = CF/CH \(\Rightarrow\)CH/CK = CF/CH \(\Rightarrow\)CH2 = CK.CF (2) => từ (1);(2)=> CE=CH. mà ta dễ dàng c/m được CE=CD. vậy CH = CD, nên H thuộc (O;CD). mà CH vuông góc với AB. => dpcm
Cho đường tròn O. Bán kính R. Đường kính AB dây AC. Biết cách từ O đến AC và BC lần lượt là 6 và 8. Tính AC, BC và bán kính của đường tròn .