Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Ngọc Linh
Xem chi tiết
Hà Thanh Tùng
Xem chi tiết
hattori heiji
17 tháng 10 2017 lúc 22:52

de bai

Hà Thanh Tùng
18 tháng 10 2017 lúc 12:19

tìm x,y

Y
19 tháng 5 2019 lúc 10:00

a) Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :

\(\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\)

\(\ge\left|x+2+1-x\right|=3\) (1)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+2\right)\left(1-x\right)\ge0\)

\(\Leftrightarrow-2\le x\le1\)

+ \(\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow3-\left(y+2\right)^2\le3\) (2)

Dấu "=" xảy ra \(\Leftrightarrow\left(y+2\right)^2=0\Leftrightarrow y=-2\)

Từ (1) và (2) suy ra \(\left|x+2\right|+\left|x+1\right|=3-\left(y+2\right)^2=3\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\le x\le1\\y=-2\end{matrix}\right.\)

b) \(\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=4\) (3)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-5\right)\left(1-x\right)\ge0\)

\(\Leftrightarrow1\le x\le5\)

+ \(\left|y+1\right|\ge0\forall y\) \(\Rightarrow\left|y+1\right|+3\ge3\)

\(\Rightarrow\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\) (4)

Dấu "=" xảy ra \(\Leftrightarrow\left|y+1\right|=0\Leftrightarrow y=-1\)

Từ (3) và (4) suy ra \(\left|x-5\right|+\left|1-x\right|=\frac{12}{\left|y+1\right|+3}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}1\le x\le5\\y=-1\end{matrix}\right.\)

Câu c,d lm tương tự

Phương Nora kute
Xem chi tiết

a) (x-1):2/3=-2/5

=>x-1=-4/15

=>x=11/15

b) |x-1/2|-1/3=0

=>|x-1/2|=1/3

=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\) 

c) Tương Tự câu B

 

Thơ Nụ =))
Xem chi tiết

a: ĐKXĐ: \(x^2+y^2\ne0\)

=>\(\left[{}\begin{matrix}x^2\ne0\\y^2\ne0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x\ne0\\y\ne0\end{matrix}\right.\)

b: ĐKXĐ: \(x^2-2x+1\ne0\)

=>\(\left(x-1\right)^2\ne0\)

=>\(x-1\ne0\)

=>\(x\ne1\)

c: ĐKXĐ: \(x^2+6x+10\ne0\)

=>\(x^2+6x+9+1\ne0\)

=>\(\left(x+3\right)^2+1\ne0\)(luôn đúng)

d:ĐKXĐ: \(\left(x+3\right)^2+\left(y-2\right)^2\ne0\)

=>\(\left[{}\begin{matrix}x+3\ne0\\y-2\ne0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x\ne-3\\y\ne2\end{matrix}\right.\)

Thái Viết Nam
Xem chi tiết
Cà Ngọc Thu
Xem chi tiết
Nguyễn Thành
Xem chi tiết
Lấp La Lấp Lánh
7 tháng 10 2021 lúc 17:44

9) \(\left\{{}\begin{matrix}\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\\\dfrac{3}{2x+y}+\dfrac{2}{2x-y}=32\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{21}{2x+y}+\dfrac{12}{2x-y}=222\\\dfrac{21}{2x+y}+\dfrac{14}{2x-y}=224\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{2x-y}=2\\\dfrac{7}{2x+y}+\dfrac{4}{2x-y}=74\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=\dfrac{1}{10}\\2x-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2y=\dfrac{9}{10}\\2x+y=\dfrac{1}{10}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{9}{20}\\x=\dfrac{11}{40}\end{matrix}\right.\)

10) \(\left\{{}\begin{matrix}x=2y-1\\2x-y=5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x-4y=-2\\2x-y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\3y=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)

11) \(\left\{{}\begin{matrix}3x-6=0\\2y-x=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\y=\dfrac{x+4}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

12) \(\left\{{}\begin{matrix}2x+y=5\\x+7y=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\2x+14y=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5\\13y=13\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

Lấp La Lấp Lánh
7 tháng 10 2021 lúc 17:52

13) \(\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{4}{x}-\dfrac{5}{y}=3\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}-\dfrac{16}{y}=8\\\dfrac{12}{x}-\dfrac{15}{y}=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{4}{y}=2\\\dfrac{1}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(tm\right)\\y=1\left(tm\right)\end{matrix}\right.\)

14) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)(ĐKXĐ: \(x,y\ne0\))

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{8}{x}+\dfrac{8}{y}=\dfrac{2}{3}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{7}{y}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)

15) \(\left\{{}\begin{matrix}2\sqrt{x-1}-\sqrt{y-1}=1\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)(ĐKXĐ: \(x\ge1,y\ge1\))

\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}=3\\\sqrt{x-1}+\sqrt{y-1}=2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-1=1\end{matrix}\right.\)\(\Leftrightarrow x=y=2\left(tm\right)\)

Phương Trần Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2021 lúc 23:32

a: \(=\dfrac{x-z}{2}\)

b: \(=\dfrac{3x}{4y^3}\)

ANH HOÀNG
Xem chi tiết
Lấp La Lấp Lánh
28 tháng 9 2021 lúc 12:54

a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)

Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)

b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)

Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)