Cho A là số nguyên . Chứng minh rằng :giá trị tuyệt đối của A<5 <=>-5<a<5
2.cho a,b,c,d là các số nguyên chứng minh :
tổng giá trị tuyệt đối của a-b cộng giá trị tuyệt đối của b-c cộng giá trị tuyệt đối của c-d cộng giá trị tuyệt đối của d-a là 1 số chẵn
cho a là số nguyên, có giá trị tuyệt đối nhỏ hơn 5, chứng minh rằng -5<a<5
Cho a là số nguyên. Chứng minh rằng: Giá trị tuyệt đối của a<5<=>-5<a<5
Cho a là số nguyên. Chứng minh rằng: giá trị tuyệt đối của 5 < 5. Suy ra -5<a<5
giá trị tuyệt đối của 5 là -5 <5
a={-4;-3;-2;-1;0;1;2;3;4}
Bài1:Tìm x biết:
a)2x-10-[3x-14-(4-5x)-2x]=2
b) (1/4x-1)+(5/6x-2)-(3/8x+1)
c)3 nhân giá trị tuyệt đối x=x+12
d)giá trị tuyệt đối x-3=giá trị tuyệt đối 2x+1
Bài 2 :
a)Chứng minh rằng tổng của 3 số nguyên liên tiếp thì chia tất cho 3
b)Chứng minh rằng tổng của 5 sồ nguyên liên tiếp thì chia tất cho 5
c)Nêu bài toán tổng quát và chứng minh rằng bài toán đó
Bài 1:
a. $2x-10-[3x-14-(4-5x)-2x]=2$
$2x-10-3x+14+(4-5x)+2x=2$
$-x-10+14+4-5x+2x=2$
$-4x+8=2$
$-4x=-6$
$x=\frac{-6}{-4}=\frac{3}{2}$
b. Đề sai. Bạn xem lại.
c.
$|x-3|=|2x+1|$
$\Rightarrow x-3=2x+1$ hoặc $x-3=-(2x+1)$
$\Rightarrow x=-4$ hoặc $x=\frac{2}{3}$
Bài 2:
a. Gọi 3 số nguyên liên tiếp là $a, a+1, a+2$
Ta có:
$a+a+1+a+2=3a+3=3(a+1)\vdots 3$ (đpcm)
b. Gọi 5 số nguyên liên tiếp là $a, a+1, a+2, a+3, a+4$
Ta có:
$a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5(a+2)\vdots 5$ (đpcm)
c.
Tổng quát: Tổng của $n$ số nguyên liên tiếp chia hết cho $n$. với $n$ lẻ.
Thật vậy, gọi $n$ số nguyên liên tiếp là $a, a+1, a+2, ...., a+n-1$
Tổng của $n$ số nguyên liên tiếp là:
$a+(a+1)+(a+2)+....+(a+n-1)$
$=na+(1+2+3+....+n-1)$
$=na+\frac{n(n-1)}{2}$
$=n[a+\frac{n-1}{2}]$
Vì $n$ lẻ nên $\frac{n-1}{2}$ nguyên
$\Rightarrow a+\frac{n-1}{2}$ nguyên
$\Rightarrow a+(a+1)+....+(a+n-1)=n[a+\frac{n-1}{2}]\vdots n$
Cho số nguyên a biết giá trị tuyệt đối của a bé hơn 4.
Chứng minh rằng -4 < a < 4
Th1 : nếu số đối của a=a thì a<4
TH2 : nếu số đối của a=-a thì -a <4 và a>4
Chứng minh rằng số cặp số nguyên (x,y) thỏa mãn :
giá trị tuyệt đối của x + giá trị tuyệt đối của y = 4n (n là số tự nhiên khác 0)
Cho biết giá trị đúng của π với 10 chữ số thập phân là π = 3,1415926535
a) Giả sử ta lấy giá trị 3,14 làm giá trị gần đúng của π. Chứng tỏ sai số tuyệt đối không vượt quá 0,002.
b) Giả sử ta lấy giá trị 3,1416 là giá trị gần đúng của số π. Chứng minh rằng sai số tuyệt đối không vượt quá 0,0001.
a) Xét: | π - 3,14 | = π - 3,14 < 3,1416 - 3,14 = 0,0016 < 0,002
b) |π - 3,1416 I = 3,1416 - π < 3,1416 - 3,1415 = 0,0001
Chúc bạn học tốt ~
a) Xét: | π - 3,14 |
= π - 3,14 < 3,1416 - 3,14 = 0,0016 < 0,002
b) |π - 3,1416 I = 3,1416 - π < 3,1416 - 3,1415
= 0,0001
Chứng minh rằng với mọi số nhuyên a ta luôn luôn có
a/|a|>0:Giá trị tuyệt đối của 1 số nguyên thì không âm
b/|a|>a:Giá trị tuyệt đối của một số nguyên luôn luôn lớn hơn hoặc bằng chính nó