cho tam giác mnp có M>N>P nội tiếp đường tròn ()O. Gọi OH, OI, OKtheo thứtựlà khoảng cách từOđến MN, NP, MP. So sánh các độdài OH, OIvà OK.
Cho tam giác MNP nhọn (MN>MP) nội tiếp đường tròn (O,R) vẽ đường cao NK và PQ cắt nhau tại H a, so sánh cung nhỏ MN và cung nhỏ MP b, chứng minh tứ giác MKHQ nội tiếp c, chứng minh tứ giác NQKP nội tiếp
b: Xét tứ giác MKHQ có
\(\widehat{MKH}+\widehat{MQH}=180^0\)
Do đó: MKHQ là tứ giác nội tiếp
c: Xét tứ giác NQKP có
\(\widehat{NKP}=\widehat{NQP}=90^0\)
Do đó: NQKP là tứ giác nội tiếp
cho tam giác MNP có MN=MP nội tiếp đường tròn tâm O, các đường cao MA, NP, PC cắt nhau tại H. a, cm tứ giác MPHC là tứ giác nội tiếp. xác định tâm I của đường tròn ngoại tiếp tức giác đó
b, cm MC. MP= MH.MA
C, cm AB là tiếp tuyến đường tròn tâm I
sao lại đường cao NP bạn ? xem lại đề nhé
Xét tứ giác MBHC có :
^MCH + ^MBH = 1800
mà 2 góc này đối
Vậy tứ giác MBHC là tứ giác nt 1 đường tròn
cho tam giác MNP có 3 góc nhọn nội tiếp đường tròn (O,R) có 2 đường cao NH và PK của tam giác MNP (H∈ MP, K∈ MN )
a) c/m tứ giác NKHP nội tiếp
b) c/m KH ⊥ OM
Cho tam giác MNP có 3 góc nhọn . đường tròn (o) đường kính NP cắt các cạnh MN,MP lần lượt tại các điểm D và E. Gọi H là giao điểm của hai đường thẳng PD và NE.
a, c/m tứ giác MDHE nội tiếp đường tròn
b, gọi A là giao điểm của MH và NP.c/m : PA.PN=PE.PM
C,Tính theo R diện tích của tam giác MNP , bt MNP =45* , MPN = 60* và NP = 2R
cho tam giác MNP ccó ba góc nhọn, nội tiếp đường tròn tâm o và MN<MP, Vẽ đường kính MA của đường tròn (O). Kẻ NI vuông góc với MA(I thuộc MA). Kẻ MH vuông góc với NP(H thuộc NP). Chứng minh
a, tưds giác MNHI nội tiếp
b, góc NMH bằng góc NIH
c, HI song song với AP
a: góc MIN=góc MHN=90 độ
=>MNHI nội tiếp
b: MNHI nội tiếp
=>góc NMH=góc NIH
Cho tam giác MNP (MN < MP) nhọn, đường tròn tâm O đường kính NP cắt hai cạnh MN và MP lần lượt tại A và B, NB, PA cắt nhau tại H, MH cắt NP tại I
a) Chứng minh :MH vuông NP tại I và HN . HB = HP . HA
b) Chứng minh : tứ giác BHIP nội tiếp
c) Chứng minh: AH là phân giác của góc IAB và BH là phân giác của góc IBA
d) AI cắt (O) tại K . Cm: MH // BK
a: góc NAP=góc NBP=90 độ
=>PA vuông góc MN và NB vuông góc MB
Xét ΔMNP có
NB,PA là đường cao
NB cắt PA tại H
=>H là trực tâm
=>MH vuông góc NP tại I
Xét ΔHAN vuông tại A và ΔHBP vuông tại B có
góc AHN=góc BHP
=>ΔHAN đồng dạng với ΔHBP
b: góc HIP+góc HBP=180 độ
=>HIPB nội tiếp
c: góc BAH=góc IMP
góc IAH=góc BNP
mà góc IMP=góc BNP
nên góc BAH=góc IAH
=>AH là phân giác của góc BAI
góc ABH=góc NMI
góc IBH=góc APN
mà góc NMI=góc APN
nên góc ABH=góc IBH
=>BH là phân giác của góc ABI
cho tam giác MNP vuông tại M. biết MP = 4cm, MN = 3cm. Gọi I là tâm đường tròn nội tiếp tam giác MNP. G là trọng tâm tam giác MNP. tính GI
Tam giác MNP nội tiếp đường tròn tâm (O), các điểm I, K, H là điểm chính giữa của các cung MN, NP, PM. Gọi J là giao điểm của IK và MN, G là giao điểm của HK và MP. Chứng minh JG song song với NP
KG là đường phân giác của M K P ^ => M G G P = M K K P (1)
KJ là đường phân giác của M K N ^ => M J J N = M K K N (2)
Chứng minh được: KN = KP (3)
Từ (1); (2); (3) => M G G P = M J J N => Đpcm