\(\int\left(2x+1\right)\left(x+3\right)^4dx\)
1, \(\int sin2x.e^{3x}dx\)
2, \(\int\dfrac{x^4dx}{\left(x^2-1\right)^2}\)
3, \(\int e^x.cos^2xdx\)
4, \(\int e^{2x}sin^2xdx\)
5, \(\int e^{-x}.cos^3xdx\)
4 câu 1,3,4,5 giống nhau, mình làm 1 câu và bạn dựa vào đó tự xử lý mấy câu còn lại nhé
1/ \(I=\int sin2x.e^{3x}dx\) \(\Rightarrow\left\{{}\begin{matrix}u=sin2x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2cos2x.dx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{1}{3}sin2x.e^{3x}-\dfrac{2}{3}\int cos2x.e^{3x}dx=\dfrac{1}{3}sin2x.e^{3x}-\dfrac{2}{3}I_1\)
Xét \(I_1=\int cos2x.e^{3x}dx\) \(\Rightarrow\left\{{}\begin{matrix}u=cos2x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-2sin2xdx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)
\(\Rightarrow I_1=\dfrac{1}{3}cos2x.e^{3x}+\dfrac{2}{3}\int sin2x.e^{3x}dx=\dfrac{1}{3}cos2x.e^{3x}+\dfrac{2}{3}I\)
\(\Rightarrow I=\dfrac{1}{3}sin2x.e^{3x}-\dfrac{2}{3}\left(\dfrac{1}{3}cos2x.e^{3x}+\dfrac{2}{3}I\right)\)
\(\Rightarrow\dfrac{13}{9}I=\dfrac{1}{9}e^{3x}\left(3sin2x-2cos2x\right)\)
\(\Rightarrow I=\dfrac{1}{13}e^{3x}\left(3sin2x-2cos2x\right)+C\)
3/ \(\int e^x\left(\dfrac{1+cos2x}{2}\right)dx=\dfrac{1}{2}\int e^xdx+\dfrac{1}{2}\int cos2x.e^xdx=\dfrac{e^x}{2}+\dfrac{1}{2}I_1\)
\(I_1\) có cách tính y hệt như bài 1, bạn nguyên hàm từng phần 2 lần là xong
4/ Cũng hạ bậc tương tự câu trên và xử lý
5/ \(I=\int e^{-x}\left(\dfrac{cos3x+3cosx}{4}\right)dx=\dfrac{1}{4}\int e^{-x}\left(cos3x+3cosx\right)dx\)
\(\Rightarrow I=\dfrac{1}{4}\int e^{-x}cos3x.dx+\dfrac{3}{4}\int e^{-x}cosx.dx=I_1+I_2\)
Dùng phương pháp tương tự bài 1, lần lượt tính \(I_1\) và \(I_2\) rồi cộng vào
2/\(I=\int\dfrac{x^4}{\left(x^2-1\right)^2}dx=\int\left(1+\dfrac{2x^2-1}{\left(x^2-1\right)^2}\right)dx=\int\left(1+\dfrac{2}{x^2-1}+\dfrac{1}{\left(x^2-1\right)^2}\right)dx\)
\(=\int\left(1+\dfrac{1}{x-1}-\dfrac{1}{x+1}+\dfrac{1}{4}\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}\right)^2\right)dx\)
\(=\int\left(1+\dfrac{1}{x-1}-\dfrac{1}{x+1}+\dfrac{1}{4}\left(\dfrac{1}{\left(x-1\right)^2}+\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{x+1}-\dfrac{1}{x-1}\right)\right)dx\)
\(=\int\left(1+\dfrac{3}{4}\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}\right)+\dfrac{1}{4}\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{4}\dfrac{1}{\left(x-1\right)^2}\right)dx\)
\(=x+\dfrac{3}{4}ln\left|\dfrac{x-1}{x+1}\right|-\dfrac{1}{4\left(x+1\right)}-\dfrac{1}{4\left(x-1\right)}+C\)
\(=x+\dfrac{3}{4}ln\left|\dfrac{x-1}{x+1}\right|-\dfrac{x}{2\left(x^2-1\right)}+C\)
1, \(\int\dfrac{x}{1-cos2x}dx\)
2, \(\int cos2x.e^{3x}dx\)
3, \(\int\left(2x+1\right)ln^2dx\)
4, \(\int\left(2x-1\right)cosxdx\)
5, \(\int\left(x^2+x+1\right)e^xdx\)
6, \(\int\left(2x+1\right)ln\left(x+2\right)dx\)
\(I=\int\dfrac{x}{1-cos2x}dx=\int\dfrac{x}{2sin^2x}dx\)
Đặt \(\left\{{}\begin{matrix}u=\dfrac{x}{2}\\dv=\dfrac{1}{sin^2x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{2}\\v=-cotx\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{-x.cotx}{2}+\dfrac{1}{2}\int cotxdx=\dfrac{-x.cotx}{2}+\dfrac{1}{2}\int\dfrac{cosx.dx}{sinx}\)
\(=\dfrac{-x.cotx}{2}+\dfrac{1}{2}\int\dfrac{d\left(sinx\right)}{sinx}=\dfrac{-x.cotx}{2}+\dfrac{1}{2}ln\left|sinx\right|+C\)
2/ Câu 2 bữa trước làm rồi, bạn coi lại nhé
3/ \(I=\int\left(2x+1\right)ln^2xdx\)
Đặt \(\left\{{}\begin{matrix}u=ln^2x\\dv=\left(2x+1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{2lnx}{x}dx\\v=x^2+x\end{matrix}\right.\)
\(\Rightarrow I=\left(x^2+x\right)ln^2x-\int\left(2x+2\right)lnxdx=\left(x^2+x\right)ln^2x-I_1\)
\(I_1=\int\left(2x+2\right)lnx.dx\) \(\Rightarrow\left\{{}\begin{matrix}u=lnx\\dv=\left(2x+2\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=x^2+2x\end{matrix}\right.\)
\(\Rightarrow I_1=\left(x^2+2x\right)lnx-\int\left(x+2\right)dx=\left(x^2+2x\right)ln-\dfrac{x^2}{2}+2x+C\)
\(\Rightarrow I=\left(x^2+x\right)ln^2x-\left(x^2+2x\right)lnx+\dfrac{x^2}{2}-2x+C\)
4/ \(I=\int\left(2x-1\right)cosx.dx\) \(\Rightarrow\left\{{}\begin{matrix}u=2x-1\\dv=cosx.dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=sinx\end{matrix}\right.\)
\(\Rightarrow I=\left(2x-1\right)sinx-2\int sinx.dx=\left(2x-1\right)sinx+2cosx+C\)
5/ \(I=\int\left(x^2+x+1\right)e^xdx\) \(\Rightarrow\left\{{}\begin{matrix}u=x^2+x+1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\left(2x+1\right)dx\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I=\left(x^2+x+1\right)e^x-\int\left(2x+1\right)e^xdx\)
\(I_1=\int\left(2x+1\right)e^xdx\) \(\Rightarrow\left\{{}\begin{matrix}u=2x+1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I_1=\left(2x+1\right)e^x-2\int e^xdx=\left(2x+1\right)e^x-2e^x+C=\left(2x-1\right)e^x+C\)
\(\Rightarrow I=\left(x^2+x+1\right)e^x-\left(2x-1\right)e^x+C=\left(x^2-x+2\right)e^x+C\)
6/ \(I=\int\left(2x+1\right).ln\left(x+2\right)dx\)
\(\Rightarrow\left\{{}\begin{matrix}u=ln\left(x+2\right)\\dv=\left(2x+1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x+2}\\v=x^2+x\end{matrix}\right.\)
\(\Rightarrow I=\left(x^2+x\right)ln\left(x+2\right)-\int\dfrac{x^2+x}{x+2}dx\)
\(=\left(x^2+x\right)ln\left(x+2\right)-\int\left(x-1+\dfrac{2}{x+2}\right)dx\)
\(I=\left(x^2+x\right)ln\left(x+2\right)-\dfrac{x^2}{2}+x-2ln\left|x+2\right|+C\)
Cho hàm số \(\int\left(x\right)=\left\{{}\begin{matrix}2x-3\left(1\right)\\\dfrac{3}{x-1}\left(2\right)\end{matrix}\right.\)
(1) khi x > 3 ; (2) khi x ≤ 3 Tính \(\int\left(4\right)\)
Giải thích hộ giùm em lun ạ . Cảm ơn nhiều
Khi \(x=4>3\Rightarrow f\left(x\right)=2x-3\)
\(\Rightarrow f\left(4\right)=2.4-3=5\)
1) \(\int ln\frac{\left(1+s\text{inx}\right)^{1+c\text{os}x}}{1+c\text{os}x}dx\)
2) \(\int\left(xlnx\right)^2dx\)
3) \(\int\frac{3xcosx+2}{1+cot^2x}dx\)
4)\(\int\frac{2}{c\text{os}2x-7}dx\)
5)\(\int\frac{1+x\left(2lnx-1\right)}{x\left(x+1\right)^2}dx\)
6) \(\int\frac{1-x^2}{\left(1+x^2\right)^2}dx\)
7)\(\int e^x\frac{1+s\text{inx}}{1+c\text{os}x}dx\)
8) \(\int ln\left(\frac{x+1}{x-1}\right)dx\)
9)\(\int\frac{xln\left(1+x\right)}{\left(1+x^2\right)^2}dx\)
10) \(\int\frac{ln\left(x-1\right)}{\left(x-1\right)^4}dx\)
11)\(\int\frac{x^3lnx}{\sqrt{x^2+1}}dx\)
12)\(\int\frac{xe^x}{_{ }\left(e^x+1\right)^2}dx\)
13) \(\int\frac{xln\left(x+\sqrt{1+x^2}\right)}{x+\sqrt{1+x^2}}dx\)
giúp mk đc con nào thì giúp nha
Câu 2)
Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)
Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)
Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)
Câu 3:
\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)
Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)
\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)
Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)
Câu 6)
\(I=-\int \frac{\left ( 1-\frac{1}{x^2} \right )dx}{x^2+2+\frac{1}{x^2}}=-\int \frac{d\left ( x+\frac{1}{x} \right )}{\left ( x+\frac{1}{x} \right )^2}=-\frac{1}{x+\frac{1}{x}}+c=-\frac{x}{x^2+1}+c\)
Câu 8)
\(I=\int \ln \left(\frac{x+1}{x-1}\right)dx=\int \ln (x+1)dx-\int \ln (x-1)dx\)
\(\Leftrightarrow I=\int \ln (x+1)d(x+1)-\int \ln (x-1)d(x-1)\)
Xét \(\int \ln tdt\) ta có:
Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln tdt=t\ln t-\int dt=t\ln t-t+c\)
\(\Rightarrow I=(x+1)\ln (x+1)-(x+1)-(x-1)\ln (x-1)+x-1+c\)
\(\Leftrightarrow I=(x+1)\ln(x+1)-(x-1)\ln(x-1)+c\)
1, I = \(\int\limits^1_0\dfrac{2x+1}{x^2+x+1}dx\)
2,\(\int\limits^{\dfrac{1}{2}}_0\dfrac{5xdx}{\left(1-x^2\right)^3}\)
3, \(\int\limits^1_0\dfrac{2x}{\left(x+1\right)^3}dx\)
4, \(\int\limits^1_0\dfrac{4x-2}{\left(x^2+1\right)\left(x+2\right)}dx\)
5, \(\int\limits^1_0\dfrac{x^2dx}{x^6-9}\)
6, \(\int\limits^2_1\dfrac{2x-1}{x^2\left(x+1\right)}dx\)
1/ \(I=\int\limits^1_0\dfrac{2x+1}{x^2+x+1}dx=\int\limits^1_0\dfrac{d\left(x^2+x+1\right)}{x^2+x+1}=ln\left|x^2+x+1\right||^1_0=ln3\)
2/ \(\int\limits^{\dfrac{1}{2}}_0\dfrac{5x}{\left(1-x^2\right)^3}dx=-\dfrac{5}{2}\int\limits^{\dfrac{1}{2}}_0\dfrac{d\left(1-x^2\right)}{\left(1-x^2\right)^3}=\dfrac{5}{4}\dfrac{1}{\left(1-x^2\right)^2}|^{\dfrac{1}{2}}_0=\dfrac{35}{36}\)
3/ \(\int\limits^1_0\dfrac{2x}{\left(x+1\right)^3}dx\Rightarrow\) đặt \(x+1=t\Rightarrow x=t-1\Rightarrow dx=dt;\left\{{}\begin{matrix}x=0\Rightarrow t=1\\x=1\Rightarrow t=2\end{matrix}\right.\)
\(I=\int\limits^2_1\dfrac{2\left(t-1\right)dt}{t^3}=\int\limits^2_1\left(\dfrac{2}{t^2}-\dfrac{2}{t^3}\right)dt=\left(\dfrac{-2}{t}+\dfrac{1}{t^2}\right)|^2_1=\dfrac{1}{4}\)
4/ \(\int\limits^1_0\dfrac{4x-2}{\left(x^2+1\right)\left(x+2\right)}dx\)
Kĩ thuật chung là tách và sử dụng hệ số bất định như sau:
\(\dfrac{4x-2}{\left(x^2+1\right)\left(x+2\right)}=\dfrac{ax+b}{x^2+1}+\dfrac{c}{x+2}=\dfrac{\left(a+c\right)x^2+\left(2a+b\right)x+2b+c}{\left(x^2+1\right)\left(x+2\right)}\)
\(\Rightarrow\left\{{}\begin{matrix}a+c=0\\2a+b=4\\2b+c=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=0\\a=-c=2\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^1_0\left(\dfrac{2x}{x^2+1}-\dfrac{2}{x+2}\right)dx=\int\limits^1_0\dfrac{d\left(x^2+1\right)}{x^2+1}-2\int\limits^1_0\dfrac{d\left(x+2\right)}{x+2}=ln\dfrac{8}{9}\)
5/ \(\int\limits^1_0\dfrac{x^2dx}{x^6-9}\Rightarrow\) đặt \(x^3=t\Rightarrow3x^2dx=dt\Rightarrow x^2dx=\dfrac{1}{3}dt;\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=1\Rightarrow t=1\end{matrix}\right.\)
\(I=\dfrac{1}{3}\int\limits^1_0\dfrac{dt}{t^2-9}=\dfrac{1}{18}\int\limits^1_0\left(\dfrac{1}{t-3}-\dfrac{1}{t+3}\right)dt=\dfrac{1}{18}ln\left|\dfrac{t-3}{t+3}\right||^1_0=-\dfrac{1}{18}ln2\)
6/ Tương tự câu 4, sử dụng hệ số bất định ta tách được:
\(\int\limits^2_1\dfrac{2x-1}{x^2\left(x+1\right)}dx=\int\limits^2_1\left(\dfrac{3x-1}{x^2}-\dfrac{3}{x+1}\right)dx=\int\limits^2_1\left(\dfrac{3}{x}-\dfrac{1}{x^2}-\dfrac{3}{x+1}\right)dx\)
\(=\left(3ln\left|\dfrac{x}{x+1}\right|+\dfrac{1}{x}\right)|^2_1=3ln\dfrac{4}{3}-\dfrac{1}{2}\)
1) \(\int ln^3xdx\)
2) \(\int_0^1\left(x+sin^2x\right)c\text{os}xdx\)
3)\(\int x\left(e^{2x}+\sqrt[3]{x+1}\right)dx\)
Câu 1)
\(I=\int \ln ^3 xdx\). Đặt \(\left\{\begin{matrix} u=\ln ^3x\\ dv=dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{3\ln ^2x}{x}dx\\ v=x\end{matrix}\right.\)
\(\Rightarrow I=x\ln ^3x-3\int \ln^2xdx\)
Tiếp tục nguyên hàm từng phần cho \(\int \ln ^2xdx\) như trên, ta suy ra:
\(\int\ln ^2xdx=x\ln^2x-2\int \ln x dx\).
Tiếp tục nguyên hàm từng phần cho \(\int \ln xdx\Rightarrow \int \ln xdx=x\ln x-x+c\)
Do đó mà \(I=x\ln ^3x-3(x\ln^2x-2x\ln x+2x)+c\)
\(\Leftrightarrow I=x\ln^3x-3x\ln^2x+6x\ln x-6x+c\)
Câu 2)
\(I=\int ^{1}_{0}(x+\sin ^2x)\cos x dx=\int ^{1}_{0}x\cos xdx+\int ^{1}_{0}\sin^2x\cos xdx\)
Đặt \(\left\{\begin{matrix} u=x\\ dv=\cos xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\sin x\end{matrix}\right.\Rightarrow \int x\cos xdx=x\sin x-\int \sin xdx=x\sin x+\cos x+c\)
\(\Rightarrow \int ^{1}_{0} x\cos xdx=\sin 1+\cos 1-1\)
Còn \(\int ^{1}_{0}\sin^2x\cos xdx=\int ^{1}_{0}\sin ^2xd(\sin x)=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{\sin ^3x}{3}=\frac{\sin^31}{3}\)
\(\Rightarrow I=-1+\sin 1+\cos 1+\frac{\sin ^3 1}{3}\approx 0,0173\)
Câu 3:
Đối với \(\int xe^{2x}dx\)
\(\left\{\begin{matrix} u=x\\ dv=e^{2x}dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=dx\\ v=\int e^{2x}dx=\frac{e^{2x}}{2}\end{matrix}\right.\)
\(\Rightarrow \int xe^{2x}=\frac{1}{2}xe^{2x}-\frac{1}{2}\int e^{2x}dx=\frac{1}{2}xe^{2x}-\frac{1}{4}e^{2x}+c\)
Đối với \(\int x\sqrt[3]{x+1}dx=\int \sqrt[3]{(x+1)^4}dx-\int \sqrt{x+1}dx=\frac{3(x+1)^\frac{7}{3}}{7}-\frac{3}{4}(x+1)^{\frac{4}{3}}+c\)
\(\Rightarrow \int x\sqrt[3]{x+1}dx=\frac{3(x+1)^{\frac{4}{3}}(4x-3)}{28}\)
Do đó mà \(\int x(e^{2x}-\sqrt[3]{x+1})dx=\frac{1}{2}xe^{2x}-\frac{1}{4}e^{2x}+\frac{3(x+1)^{\frac{4}{3}}(4x-3)}{28}+c\)
a/ cho hàm số \(y=\int\left(x\right)\) = -2x+3. tính \(\int-2\) ; \(\int\left(-1\right);\int\left(0\right);\) \(\int\left(-\frac{1}{2}\right);\int\left(\frac{1}{2}\right)\)
b/ cho hàm số y=g(x)=\(x^2\)-1 . Tính g(-1); g(0); g(1); g(2)
a)
\(f\left(-2\right)=\left(-2\right).\left(-2\right)+3=4+3=7\)
\(f\left(-1\right)=\left(-2\right).\left(-1\right)+3=2+3=5\)
\(f\left(0\right)=\left(-2\right).0+3=0+3=3\)
\(f\left(-\frac{1}{2}\right)=\left(-2\right).\left(-\frac{1}{2}\right)+3=1+3=4\)
\(f\left(\frac{1}{2}\right)=\left(-2\right).\frac{1}{2}+3=\left(-1\right)+3=2\)
Câu b thì bạn cứ thế số vào và làm tương tự vậy.
chúc bạn học tốt
b)g(-1)=(-1)2-1=1-1=0
g(0)=02-1=0-1=-1
g(1)=12-1=1-1=0
g(2)=22-1=4-1=3
Tính các nguyên hàm sau đây :
a) \(\int\left(x+\ln x\right)x^2dx\)
b) \(\int\left(x+\sin^2x\right)\sin xdx\)
c) \(\int\left(x+e^x\right)e^{2x}dx\)
d) \(\int\left(x+\sin x\right)\dfrac{dx}{\cos^2x}\)
e) \(\int\dfrac{e^x\cos x+\left(e^x+1\right)\sin x}{e^x\sin x}dx\)
a) \(\int\left(x+\ln x\right)x^2\text{d}x=\int x^3\text{d}x+\int x^2\ln x\text{dx}\)
\(=\dfrac{x^4}{4}+\int x^2\ln x\text{dx}+C\) (*)
Để tính: \(\int x^2\ln x\text{dx}\) ta sử dụng công thức tính tích phân từng phần như sau:
Đặt \(\left\{{}\begin{matrix}u=\ln x\\v'=x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u'=\dfrac{1}{x}\\v=\dfrac{1}{3}x^3\end{matrix}\right.\)
Suy ra:
\(\int x^2\ln x\text{dx}=\dfrac{1}{3}x^3\ln x-\dfrac{1}{3}\int x^2\text{dx}\)
\(=\dfrac{1}{3}x^3\ln x-\dfrac{1}{3}.\dfrac{1}{3}x^3\)
Thay vào (*) ta tính được nguyên hàm của hàm số đã cho bằng:
(*) \(=\dfrac{1}{3}x^3-\dfrac{1}{3}x^3\ln x+\dfrac{1}{9}x^3+C\)
\(=\dfrac{4}{9}x^3-\dfrac{1}{3}x^3\ln x+C\)
b) Đặt \(\left\{{}\begin{matrix}u=x+\sin^2x\\v'=\sin x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u'=1+2\sin x.\cos x\\v=-\cos x\end{matrix}\right.\)
Ta có:
\(\int\left(x+\sin^2x\right)\sin x\text{dx}=-\left(x+\sin^2x\right)\cos x+\int\left(1+2\sin x\cos^2x\right)\text{dx}\)
\(=-\left(x+\sin^2x\right)\cos x+\int\cos x\text{dx}+2\int\sin x.\cos^2x\text{dx}\)
\(=-\left(x+\sin^2x\right)\cos x+\sin x-2\int\cos^2x.d\left(\cos x\right)\)
\(=-\left(x+\sin^2x\right)\cos x+\sin x-2\dfrac{\cos^3x}{3}+C\)
c) Đặt \(\left\{{}\begin{matrix}u=x+e^x\\v'=e^{2x}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u'=1+e^x\\v=\dfrac{1}{2}e^{2x}\end{matrix}\right.\)
Ta có:
\(\int\left(x+e^x\right)e^{2x}\text{dx}=\dfrac{1}{2}\left(x+e^x\right)e^{2x}-\dfrac{1}{2}\int\left(1+e^x\right)e^{2x}\text{dx}\)
\(=\dfrac{1}{2}\left(x+e^x\right)e^{2x}-\dfrac{1}{2}\int e^{2x}\text{dx}-\dfrac{1}{2}\int e^{3x}\text{dx}\)
\(=\dfrac{1}{2}\left(x+e^x\right)e^{2x}-\dfrac{1}{2}.\dfrac{1}{2}e^{2x}-\dfrac{1}{2}.\dfrac{1}{3}e^{3x}\)
\(=\dfrac{1}{2}xe^{2x}-\dfrac{1}{4}e^{2x}+\dfrac{1}{3}e^{3x}\)
Tìm nguyên hàm các hàm số hữu tỉ sau :
a) \(\int\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}dx\)
b) \(\int\frac{x^2+1}{\left(x-1\right)^3\left(x+3\right)}dx\)
a) Mẫu số chứa các biểu thức có nghiệm thực và không có nghiệm thực.
\(f\left(x\right)=\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+1}=\frac{A\left(x^2+1\right)+\left(x-1\right)\left(Bx+C\right)}{\left(x-1\right)\left(x^2+1\right)}\left(1\right)\)
Tay x=1 vào 2 tử, ta có : 2=2A, vậy A=1
Do đó (1) trở thành :
\(\frac{1\left(x^2+1\right)+\left(x-1\right)\left(Bx+C\right)}{\left(x-1\right)\left(x^2+1\right)}=\frac{\left(B+1\right)x^2+\left(C-B\right)x+1-C}{\left(x-1\right)\left(x^2+1\right)}\)
Đồng nhất hệ số hai tử số, ta có hệ :
\(\begin{cases}B+1=1\\C-B=2\\1-C=-1\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}B=0\\C=2\\A=1\end{cases}\)\(\Rightarrow\)
\(f\left(x\right)=\frac{1}{x-1}+\frac{2}{x^2+1}\)
Vậy :
\(f\left(x\right)=\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}dx=\int\frac{1}{x-1}dx+2\int\frac{1}{x^2+1}=\ln\left|x+1\right|+2J+C\left(2\right)\)
* Tính \(J=\int\frac{1}{x^2+1}dx.\)
Đặt \(\begin{cases}x=\tan t\rightarrow dx=\left(1+\tan^2t\right)dt\\1+x^2=1+\tan^2t\end{cases}\)
Cho nên :
\(\int\frac{1}{x^2+1}dx=\int\frac{1}{1+\tan^2t}\left(1+\tan^2t\right)dt=\int dt=t;do:x=\tan t\Rightarrow t=arc\tan x\)
Do đó, thay tích phân J vào (2), ta có :
\(\int\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}dx=\ln\left|x-1\right|+arc\tan x+C\)
b) Ta phân tích
\(f\left(x\right)=\frac{x^2+1}{\left(x-1\right)^3\left(x+3\right)}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}+\frac{D}{x+3}\)\(=\frac{A\left(x+3\right)+B\left(x-1\right)\left(x+3\right)+C\left(x-1\right)^2\left(x+3\right)+D\left(x-1\right)^3}{\left(x-1\right)^3\left(x+3\right)}\)
Thay x=1 và x=-3 vào hai tử số, ta được :
\(\begin{cases}x=1\rightarrow2=4A\rightarrow A=\frac{1}{2}\\x=-3\rightarrow10=-64D\rightarrow D=-\frac{5}{32}\end{cases}\)
Thay hai giá trị của A và D vào (*) và đồng nhất hệ số hai tử số, ta cso hệ hai phương trình :
\(\begin{cases}0=C+D\Rightarrow C=-D=\frac{5}{32}\\1=3A-3B+3C-D\Rightarrow B=\frac{3}{8}\end{cases}\)
\(\Rightarrow f\left(x\right)=\frac{1}{2\left(x-1\right)^3}+\frac{3}{8\left(x-1\right)^2}+\frac{5}{32\left(x-1\right)}-+\frac{5}{32\left(x+3\right)}\)
Vậy :
\(\int\frac{x^2+1}{\left(x-1\right)^3\left(x+3\right)}dx=\)\(\left(\frac{1}{2\left(x-1\right)^3}+\frac{3}{8\left(x-1\right)^2}+\frac{5}{32\left(x-1\right)}-+\frac{5}{32\left(x+3\right)}\right)dx\)
\(=-\frac{1}{a\left(x-1\right)^2}-\frac{3}{8\left(x-1\right)}+\frac{5}{32}\ln\left|x-1\right|-\frac{5}{32}\ln\left|x+3\right|+C\)
\(=-\frac{1}{a\left(x-1\right)^2}-\frac{3}{8\left(x-1\right)}+\frac{5}{32}\ln\left|\frac{x-1}{x+3}\right|+C\)