Tìm các số tự nhiên a sao cho \(\frac{\sqrt{a}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}\)là số hữu tỉ
Biết rằng a là số tự nhiên không chính phương thì \(\sqrt{a}\)là số vô tỉ
Gỉai thích các tập hơp sau tập hợp nào là số hữu tỉ tập hợp nào không phải:
\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7}+5}\)
\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}\)
\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}\)
\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}\)
Thế muốn giải thích thì liệt kê đau đầu =(
\(\frac{3}{\sqrt{7}-5}-\frac{3}{\sqrt{7+5}}=\frac{-10}{9}\inℚ\)
\(\frac{\sqrt{7}+5}{\sqrt{7}-5}+\frac{\sqrt{7}-5}{\sqrt{7}+5}=12\inℚ\)
Đây là TH là số hữu tỉ còn lại.....
\(\frac{4}{2-\sqrt{3}}-\frac{4}{2+\sqrt{3}}=8\sqrt{3}\notinℚ\)
\(\frac{\sqrt{3}}{\sqrt{7}-2}-2\sqrt{7}=2-\sqrt{7}\notinℚ\)
1, Rút gọn A = \(\frac{\sqrt{2+\sqrt{4-x^2}}\left[\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right]}{4+\sqrt{4-x^2}}\)
2, Cho trước số hữu tỉ m sao cho \(\sqrt[3]{m}\) là số vô tỉ. Tìm a, b, c hữu tỉ để \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0\)
1.Sắp xếp các số sau theo thứ tự từ bé đến lớn:
\(\sqrt{625}-\frac{1}{\sqrt{8}};\sqrt{484}-\frac{1}{\sqrt{5}};\sqrt{576}-\frac{1}{\sqrt{7}};\sqrt{529}-\frac{1}{\sqrt{6}}\)
2. a =\(\sqrt{3}\) là số vô tỉ hay số hữu tỉ ? Vì sao ?
Giúp mình với nhé
Cảm ơn trước ^_^
Bài 2 :
Giả sử \(a=\sqrt{3}\)là số hữu tỉ
Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )
Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)
Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)
\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)
=> m có dạng \(3k\)
Thay m vào (*) ta có : \(9k^2=3n^2\)
\(\Leftrightarrow3k^2=n^2\)
\(\Leftrightarrow n=\sqrt{3}k\)
Vì k là số nguyên => n không là số nguyên
=> điều giả sử là sai
=> \(\sqrt{3}\)là số vô tỉ
Cho trước số hữu tỉ m sao cho \(\sqrt[3]{m}\) là số vô tỉ. tìm các số hữu tỉ a, b, c để \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0\)
Cho trước số hữu tỉ m sao cho \(\sqrt[3]{m}\)là số vô tỉ. Tìm các số hửu tỉ a,b,c để : \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0\)
\(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)
\(\Leftrightarrow\sqrt[3]{m^2}=-\frac{b\sqrt[3]{m}+c}{a}\)
\(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)
\(\Leftrightarrow a.m+b\sqrt[3]{m^2}+c\sqrt[3]{m}=0\)
\(\Leftrightarrow a.m+b.\left(-\frac{b\sqrt[3]{m}+c}{a}\right)+c\sqrt[3]{m}=0\)
\(\Leftrightarrow a^2m+b.\left(-b\sqrt[3]{m}-c\right)+ac\sqrt[3]{m}=0\)
\(\Leftrightarrow a^2m-b^2.\sqrt[3]{m}-bc+ac\sqrt[3]{m}=0\)
\(\Leftrightarrow a^2m-bc=\sqrt[3]{m}\left(b^2-ac\right)\)
\(\Leftrightarrow\frac{a^2m-bc}{\sqrt[3]{m}}=b^2-ac\)
Do \(\frac{a^2m-bc}{\sqrt[3]{m}}\in I\)và \(b^2-ac\in Q\)nên
\(\Rightarrow\hept{\begin{cases}\frac{a^2m-bc}{\sqrt[3]{m}}=0\\b^2-ac=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2m-bc=0\\b^2-ac=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2m=bc\\b^2=ac\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}a^3m=abc\\b^3=abc\end{cases}\Rightarrow a^3m=b^3}\)
Với \(a,b\ne0\) \(\Rightarrow m=1\Rightarrow\sqrt[3]{m}=1\)là số hữu tỉ ( LOẠI )
Với \(a=b=0\Rightarrow c=0\left(TM\right)\)
Vậy a=b=c=0 thỏa mãn đề bài
cho trước số hữu tỉ m sao cho \(\sqrt[3]{m}\)là số vô tỉ. tìm các số hữu tỉ a,b,c để: \(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0\)
Tìm các số hữu tỉ a,b sao cho x=$\sqrt{2}$+1/$\sqrt{2}$-1 là nghiệm của pt: x^3+ax^2+bx+1=0
Cho: \(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}\)
Tìm các số hữu tỉ x để A là số nguyên.
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}=\frac{\sqrt{x}-2+4}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{\sqrt{x}-2}+\frac{4}{\sqrt{x}-2}=1+\frac{4}{\sqrt{x}-2}\)
Do A nguyên nên \(\frac{4}{\sqrt{x}-2}\) nguyên
\(\Rightarrow\sqrt{x}-2\inƯ\left(4\right)\)
Mà \(\sqrt{x}-2\ge-2\Rightarrow\sqrt{x}-2\in\left\{1;-1;2;-2;4\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{3;1;4;0;6\right\}\)
\(\Rightarrow x\in\left\{9;1;16;0;36\right\}\)
Vậy \(x\in\left\{9;1;16;0;36\right\}\)
Nếu \(\frac{23\sqrt{2}}{\sqrt{2}+\sqrt{14+5\sqrt{3}}}=a+b\sqrt{3}\)với a;b là các số hữu tỉ thì ab=....