Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Kiều Trinh
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 19:01

\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy pt vô nghiệm

\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)

\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

Minh Hiếu
14 tháng 10 2021 lúc 19:01

a) \(\sqrt{x-5}=\sqrt{3-x}\)

\(\left(\sqrt{x-5}\right)^2=\left(\sqrt{3-x}\right)^2\)

\(x-5=3-x\)

\(x=4\)

b) \(\sqrt{4-5x}=\sqrt{2-5x}\)

\(\left(\sqrt{4-5x}\right)^2=\left(\sqrt{2-5x}\right)^2\)

\(4-5x=2-5x\)

\(2=0\) (Vô lí)

Minh Anh
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:36

a) \(\sqrt {3{x^2} - 4x - 1}  = \sqrt {2{x^2} - 4x + 3} \)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}3{x^2} - 4x - 1 = 2{x^2} - 4x + 3\\ \Leftrightarrow {x^2} = 4\end{array}\)

\( \Leftrightarrow x = 2\) hoặc \(x =  - 2\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị x=2; x=-2 thỏa mãn

Vậy tập nghiệm của phương trình là \(S = \left\{ { - 2;2} \right\}\)

b) \(\sqrt {{x^2} + 2x - 3}  = \sqrt { - 2{x^2} + 5} \)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}{x^2} + 2x - 3 =  - 2{x^2} + 5\\ \Leftrightarrow 3{x^2} + 2x - 8 = 0\end{array}\)

\( \Leftrightarrow x =  - 2\) hoặc \(x = \frac{4}{3}\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy chỉ có giá trị \(x = \frac{4}{3}\) thỏa mãn

Vậy tập nghiệm của phương trình là \(x = \frac{4}{3}\)

c) \(\sqrt {2{x^2} + 3x - 3}  = \sqrt { - {x^2} - x + 1} \)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}2{x^2} + 3x - 3 =  - {x^2} - x + 1\\ \Leftrightarrow 3{x^2} + 4x - 4\end{array}\)

\( \Leftrightarrow x =  - 2\) hoặc \(x = \frac{2}{3}\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị đều không thỏa mãn.

Vậy phương trình vô nghiệm

d) \(\sqrt { - {x^2} + 5x - 4}  = \sqrt { - 2{x^2} + 4x + 2} \)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l} - {x^2} + 5x - 4 =  - 2{x^2} + 4x + 2\\ \Leftrightarrow {x^2} + x - 6 = 0\end{array}\)

\( \Leftrightarrow x =  - 3\) hoặc \(x = 2\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x=2 thỏa mãn.

Vậy nghiệm của phương trình là x = 2.

Trịnh Thị Hoài An
Xem chi tiết
Trang Nguyen
Xem chi tiết
Hung nguyen
25 tháng 2 2017 lúc 9:49

1/ \(3x^2+4x-3=4x\sqrt{4x-3}\)

\(\Leftrightarrow\left(4x^2-4x\sqrt{4x-3}+4x-3\right)-x^2=0\)

\(\Leftrightarrow\left(2x-\sqrt{4x-3}\right)^2-x^2=0\)

\(\Leftrightarrow\left(3x-\sqrt{4x-3}\right)\left(x-\sqrt{4x-3}\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}3x=\sqrt{4x-3}\\x=\sqrt{4x-3}\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}9x^2-4x+3=0\\x^2-4x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Huyền
17 tháng 6 2019 lúc 16:36

3.\(pt\Leftrightarrow\sqrt{3x+8}-\sqrt{3x+5}=\sqrt{5x-4}-\sqrt{5x-7}\)

\(\Leftrightarrow\frac{3x+8-5x+4}{\sqrt{3x+8}+\sqrt{5x+4}}-\frac{3x+5-5x+7}{\sqrt{3x+5}+\sqrt{5x+7}}=0\)

\(\Leftrightarrow\left(12-2x\right)\left(\frac{1}{\sqrt{3x+8}+\sqrt{5x+4}}+\frac{1}{\sqrt{3x+5}+\sqrt{5x+7}}\right)=0\)

\(\Rightarrow x=6\)

Miner Đức
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2021 lúc 21:33

1) Ta có: \(\left|x^2-4x-5\right|=x-1\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5=x-1\left(\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\right)\\-x^2+4x+5=x-1\left(-1< x< 5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-5-x+1=0\\-x^2+4x+5-x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-4=0\\-x^2+3x+6=0\end{matrix}\right.\Leftrightarrow x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}=0\)

\(\Leftrightarrow\left(x-\dfrac{5}{2}\right)^2=\dfrac{41}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{5}{2}=\dfrac{\sqrt{41}}{2}\\x-\dfrac{5}{2}=-\dfrac{\sqrt{41}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{41}+5}{2}\left(nhận\right)\\x=\dfrac{-\sqrt{41}+5}{2}\left(loại\right)\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{\sqrt{41}+5}{2}\right\}\)

lmao lmao
Xem chi tiết
Trần Minh Hoàng
25 tháng 5 2021 lúc 18:59

ĐKXĐ: \(3-2x\ge0\Leftrightarrow x\le\dfrac{3}{2}\)

Trần Minh Hoàng
25 tháng 5 2021 lúc 19:18

b) ĐKXĐ: \(-1\le x\le3\)

c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\\x\ne3\end{matrix}\right.\).

d) ĐKXĐ: \(x< \dfrac{3}{5}\).

Đức Anh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 8:45

1: ĐKXĐ: x>1/2

=>\(\dfrac{x}{\sqrt{2x-1}}+\dfrac{x}{\sqrt[4]{4x-3}}=2\)

x^2-2x+1>=0

=>x^2>=2x-1

=>\(\dfrac{x}{\sqrt{2x-1}}>=1\)

Dấu = xảy ra khi x=1

(x^2-2x+1)(x^2+2x+3)>=0

=>x^4-4x+3>=0

=>x^4>=4x-3

=>\(\dfrac{x}{\sqrt[4]{4x-3}}>=1\)

=>VT>=2

Dấu = xảy ra khi x=1

2: 4x-1=x+x+2x-1

5x-2=x+2x-1+2x-1

\(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}\right)\left(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}\right)>=9\)

=>\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\dfrac{9}{\sqrt{x}+\sqrt{x}+\sqrt{2x-1}}\)

\(\left(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}\right)^2< =3\left(4x-1\right)\)

=>\(\sqrt{x}+\sqrt{x}+\sqrt{2x-1}< =\sqrt{3\left(4x-1\right)}\)

=>\(\dfrac{2}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\dfrac{3\sqrt{3}}{\sqrt{4x-1}}\)

Tương tự, ta cũng có: \(\dfrac{1}{\sqrt{x}}+\dfrac{2}{\sqrt{2x-1}}>=\dfrac{3\sqrt{3}}{\sqrt{5x-2}}\)

=>\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{2x-1}}>=\sqrt{3}\left(\dfrac{1}{\sqrt{4x-1}}+\dfrac{1}{\sqrt{5x-2}}\right)\)

Dấu = xảy ra khi x=1

hằng hồ thị hằng
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 7 2020 lúc 10:41

a/

ĐKXĐ: \(x\ge\frac{1}{4}\)

\(\Leftrightarrow\sqrt{5x+1}\le\sqrt{4x-1}+3\sqrt{x}\)

\(\Leftrightarrow5x+1\le13x-1+6\sqrt{x\left(4x-1\right)}\)

\(\Leftrightarrow3\sqrt{x\left(4x-1\right)}\ge1-4x\)

Do \(x\ge\frac{1}{4}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP\le0\end{matrix}\right.\) BPT luôn đúng

Vậy nghiệm của BPT đã cho là \(x\ge\frac{1}{4}\)

Nguyễn Việt Lâm
15 tháng 7 2020 lúc 10:48

b/

ĐKXĐ: \(\left[{}\begin{matrix}x\ge\frac{-5+2\sqrt{5}}{5}\\x\le\frac{-5-2\sqrt{5}}{5}\end{matrix}\right.\)

Đặt \(\sqrt{5x^2+10x+1}=t\ge0\Rightarrow x^2+2x=\frac{t^2-1}{5}\)

BPT trở thành:

\(t\ge7-\frac{t^2-1}{5}\Leftrightarrow t^2+5t-36\ge0\)

\(\Rightarrow\left[{}\begin{matrix}t\le-9\left(l\right)\\t\ge4\end{matrix}\right.\)

\(\Rightarrow\sqrt{5x^2+10x+1}\ge4\)

\(\Leftrightarrow5x^2+10x-15\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-3\end{matrix}\right.\)

Nguyễn Việt Lâm
15 tháng 7 2020 lúc 10:52

c/

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow x^2-4+1-\sqrt{x-1}+2-\sqrt{2x}< 0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\frac{x-2}{1+\sqrt{x-1}}-\frac{2\left(x-2\right)}{2+\sqrt{2x}}< 0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-\frac{1}{1+\sqrt{x-1}}-\frac{2}{2+\sqrt{2x}}\right)< 0\)

\(\Leftrightarrow\left(x-2\right)\left(x+\frac{\sqrt{x+1}}{1+\sqrt{x-1}}+\frac{\sqrt{2x}}{2+\sqrt{2x}}\right)< 0\)

\(\Leftrightarrow x-2< 0\Rightarrow x< 2\) (phần trong ngoặc to luôn dương)

Vậy nghiệm của BPT là \(1\le x< 2\)

Tanjirou Kamado
Xem chi tiết
svtkvtm
24 tháng 1 2021 lúc 20:42

\(\text{Bất phương trình tương đương với: }\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}>\sqrt{\left(x-1\right)\left(x-4\right)}\Leftrightarrow\sqrt{x-2}+\sqrt{x-3}>\sqrt{x-4}\left(\text{ đúng}\right)\)

Hồng Phúc
24 tháng 1 2021 lúc 22:54

ĐK: \(x\le1;x\ge4\)

\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}>\sqrt{x^2-5x+4}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}>\sqrt{\left(x-1\right)\left(x-4\right)}\left(1\right)\)

TH1: \(x=1\), bất phương trình vô nghiệm

TH2: \(x< 1\)

\(\left(1\right)\Leftrightarrow\sqrt{2-x}+\sqrt{3-x}>\sqrt{4-x}\)

\(\Leftrightarrow5-2x+2\sqrt{\left(2-x\right)\left(3-x\right)}>4-x\)

\(\Leftrightarrow2\sqrt{\left(2-x\right)\left(3-x\right)}>x-1\)

\(x< 1\Rightarrow x-1< 0\Rightarrow\) Bất phương trình có nghiệm với mọi \(x< 1\)

TH3: \(x\ge4\)

\(\left(1\right)\Leftrightarrow\sqrt{x-2}+\sqrt{x-3}>\sqrt{x-4}\)

\(\Leftrightarrow2x-5+2\sqrt{\left(x-2\right)\left(x-3\right)}>x-4\)

\(\Leftrightarrow2\sqrt{x^2-5x+6}>1-x\)

\(x\ge4\Rightarrow1-x< 0\Rightarrow\) bất phương trình có nghiệm với mọi \(x\ge4\)

Vậy bất phương trình có tập nghiệm \(S=\left(-\infty;1\right)\cup[4;+\infty)\)