chứng minh: 52014-52013+52012⋮105
Bài 1)Chứng minh rằng
a) 52014+52013-52012 chia hết cho 29
b) 7500+7499-7498 chia hết cho 11
a/ \(5^{2014}+5^{2013}-5^{2012}=5^{2012}\left(5^2+5-1\right)=5^{2012}.29⋮29\left(đpcm\right)\)
b/ \(7^{500}+7^{499}-7^{498}=7^{498}\left(7^2+7-1\right)=7^{498}.55⋮11\left(đpcm\right)\)
Tính: (12014 + 22014 + 32014 + 42014 + 52014) : 5
197382465+10120=52013+?
197382465+10120=52013+ 197340572
Kết quả là 197340572
Nhớ kik luôn nhé mình sẽ luôn giúp cậu
197382465 + 10120 = 52013 + 197340572
tk mk nha
Tìm số nguyên x, biết:
m) 5x = 52019 : ( 52013 - 100. 52010 )
\(\Leftrightarrow5^x=\dfrac{5^{2019}}{5^{2010}\cdot5^2}=5^7\)
hay x=7
a) Cho S = 5 + 52+ 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n+ 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Giải bất phương trình sau: 2 x − 5 2013 + x − 2 1007 ≤ 2 x − 3 2015 + x − 1 1008
a) Cho S = 5 + 52 + 53 + 54 + 55 + 56 +…+ 52012. Chứng tỏ S chia hết cho 65.
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6, chia cho 4 dư 1 và chia cho 19 dư 11.
c) Chứng tỏ: A = 10n + 18n - 1 chia hết cho 27 (với n là số tự nhiên)
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
chứng minh rằng: 3^105+4^105 chia hết cho 13 nhưng ko chia hết cho 11
3^(3*15)+4.4^(2*51)
(27)^15+4.16^51
có 27 chia 13 dư 1
16 chia 13 dư 3 =>4.16^51 chia 3 dư 12
1+12=13 vậy chia hết cho 13
27 chia 11 dư 5
16 chia 11 dư 5
5+5*4=25 ko chia cho 11
Chứng minh rằng số 3105+ 4105 ko chia hết cho 11.
Theo mình thì giải thế này:
Lũy thừa của 3 và 4 lên thì chỉ chia hết cho chúng lũy thừa lên hoặc chúng.
Mà 3 và 4 nguyên tố cùng nhau với 11 nên không chia hết cho 11.
Vậy ta có điều cần chứng minh.
Chúc em học tốt^^