-3x = -5 + 29
Tìm x biết
a). 3x-4/2x+5=3x+7/2x-20
b). 10x-5/7x+2=50x+10/35x-29
a) \(\dfrac{3x-4}{2x+5}=\dfrac{3x+7}{2x-20}\left(đk:x\ne-\dfrac{5}{2},x\ne10\right)\)
\(\Rightarrow\left(3x-4\right)\left(2x-20\right)=\left(3x+7\right)\left(2x+5\right)\)
\(\Rightarrow6x^2-68x+80=6x^2+29x+35\)
\(\Rightarrow97x=45\Rightarrow x=\dfrac{45}{97}\)
b) \(\dfrac{10x-5}{7x+2}=\dfrac{50x+10}{35x-29}\left(đk:x\ne-\dfrac{2}{7},x\ne\dfrac{29}{35}\right)\)
\(\Rightarrow\left(10x-5\right)\left(35x-29\right)=\left(50x+10\right)\left(7x+2\right)\)
\(\Rightarrow350x^2-465x+145=350x^2+170x+20\)
\(\Rightarrow635x=125\Rightarrow x=\dfrac{25}{127}\)
Tìm x ∈ Z, biết:
b) -3x = -5 + 29
b) | -5 | . (-7) + 4 . (-9)
= 5 . (-7) + (-36)
= -35 + (-36) = -71
4x-3/x-5+29/3
2x-1/5-3x=2
Tìm x, biết a. 0,5x -2/3x=7/12 b. -8/17+5/17<x/17<-6/17+9/17 c. [x-5/12].9/29=-6/29
\(a,0,5x-\frac{2}{3}x=\frac{7}{12}\Rightarrow\frac{1}{2}x-\frac{2}{3}x=\frac{7}{12}\)
\(\Rightarrow x\left(\frac{1}{2}-\frac{2}{3}\right)=\frac{7}{12}\Rightarrow x\cdot\left(\frac{3}{6}-\frac{4}{6}\right)=\frac{7}{12}\)
\(\Rightarrow x\cdot\left(-1\right)=\frac{7}{12}\Rightarrow x=\frac{7}{12}:\left(-1\right)=\frac{7}{-12}\)
\(c,\frac{\left(x-5\right)}{12}\cdot\frac{9}{29}=\frac{-6}{29}\Rightarrow\frac{\left(x-5\right)}{12}=\frac{-6}{29}:\frac{9}{26}\)
\(\frac{\Rightarrow\left(x-5\right)}{12}=\frac{-6}{9}=\frac{-2}{3}\Rightarrow x-5=-\frac{2}{3}\cdot12\)
\(\Rightarrow x-5=\frac{-24}{3}=-8\Rightarrow x=-8+5=-3\)
\(a,0,5x-\frac{2}{3}x=\frac{7}{12}\)
\(\Rightarrow\frac{1}{2}x-\frac{2}{3}x=\frac{7}{12}\)
\(\Rightarrow-\frac{1}{6}x=\frac{7}{12}\)
\(\Rightarrow x=-\frac{7}{2}\)
\(c,\frac{x-5}{12}\cdot\frac{9}{29}=-\frac{6}{29}\)
\(\Rightarrow\frac{x-5}{12}=-\frac{2}{3}\)
\(\Rightarrow x-5=12.\left(-\frac{2}{3}\right)\)
\(\Rightarrow x-5=-8\)
\(\Rightarrow x=-3\)
b)\(\frac{-8}{17}+\frac{5}{17}< \frac{x}{17}< \frac{-6}{17}+\frac{9}{17}\)\(\left(x\in Z\right)\)
\(\Rightarrow\frac{-3}{17}< \frac{x}{17}< \frac{3}{17}\)
\(\Rightarrow-3< x< 3\)
\(\Rightarrow x\in\left\{-2;-1;0;1;2\right\}\)
Vậy \(x\in\left\{-2;-1;0;1;2\right\}\)
( x-17)/33 + (x-21)/29 + x/25 =4
(3x-5)(7-5x)+(5x+2)(3x-2) =2
Giải phương trình:
\(\frac{3x\:+\:5}{16}\) - \(\frac{3x-5}{26}\)=\(\frac{3x\:-8}{29}\)-\(\frac{3x\:+8}{13}\)
Cộng từng hạng tử của hai vế với 1 , ta suy ra được tử chung là 3x+21=0
=> x=-7
giải pt:
a, \(2x^2-6x-1=\sqrt{4x+5}\)
b, \(18x^2+6x-29=\sqrt{12x+61}\)
c, \(4x^2-13x+5+\sqrt{3x+1}=0\)
c, \(4x^2-13x+5+\sqrt{3x+1}=0\)
c.
ĐLXĐ: \(x\ge-\dfrac{1}{3}\)
\(-\left(3x+1\right)+\sqrt{3x+1}+4x^2-10x+6=0\)
Đặt \(\sqrt{3x+1}=t\ge0\)
\(\Rightarrow-t^2+t+4x^2-10x+6=0\)
\(\Delta=1+4\left(4x^2-10x+6\right)=\left(4x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{-1+4x-5}{-2}=3-2x\\t=\dfrac{-1-4x+5}{-2}=2x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+1}=3-2x\left(x\le\dfrac{3}{2}\right)\\\sqrt{3x-1}=2x-2\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=4x^2-12x+9\left(x\le\dfrac{3}{2}\right)\\3x-1=4x^2-8x+4\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-\dfrac{61}{12}\)
\(\Leftrightarrow36x^2+12x-58-2\sqrt{12x+61}=0\)
\(\Leftrightarrow\left(36x^2+24x+4\right)-\left(12x+61+2\sqrt{12x+61}+1\right)=0\)
\(\Leftrightarrow\left(6x+2\right)^2-\left(\sqrt{12x+61}+1\right)^2=0\)
\(\Leftrightarrow\left(6x+1-\sqrt{12x+61}\right)\left(6x+3+\sqrt{12x+61}\right)=0\)
\(\Leftrightarrow...\) tương tự câu a
a.
ĐKXĐ: \(x\ge-\dfrac{5}{4}\)
\(\Leftrightarrow4x^2-12x-2-2\sqrt{4x+5}=0\)
\(\Leftrightarrow\left(4x^2-8x+4\right)-\left(4x+5+2\sqrt{4x+5}+1\right)=0\)
\(\Leftrightarrow\left(2x-2\right)^2-\left(\sqrt{4x+5}+1\right)^2=0\)
\(\Leftrightarrow\left(2x-2-\sqrt{4x+5}-1\right)\left(2x-2+\sqrt{4x+5}+1\right)=0\)
\(\Leftrightarrow\left(2x-3-\sqrt{4x+5}\right)\left(2x-1+\sqrt{4x+5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+5}=2x-3\left(x\ge\dfrac{3}{2}\right)\\\sqrt{4x+5}=1-2x\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+5=4x^2-12x+9\left(x\ge\dfrac{3}{2}\right)\\4x+5=4x^2-4x+1\left(x\le\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
tìm \(x\) biết:
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
b) \(3x\left(1-2x\right)+2\left(3x+7\right)=29\)
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b) \(3x\left(1-2x\right)+2\left(3x+7\right)=29\)
\(\Rightarrow3x-6x^2+6x+14=29\)
\(\Rightarrow-6x^2+9x-15=0\)
\(\Rightarrow-6\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{93}{8}=0\)
\(\Rightarrow-6\left(x-\dfrac{3}{4}\right)^2-\dfrac{93}{8}=0\)(vô lý)
Vậy \(S=\varnothing\)
a. \(2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)
a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
hay x=-2
tinhs các biểu thức sau
C=x3+3x+3x2+5 với x=29
D=x3-3x2+3x với x=11
\(C=x^3+3x+3x^2+5\)
\(=\left(x^3+3x^2+3x+1\right)+4\)
\(=\left(x+1\right)^3+4\)
Thay \(x=29\) vào biểu thức C ta được :
\(C=\left(29+1\right)^3+4=30^3+4=27000+4=27004\)
Vậy................
\(D=x^3-3x^2+3x\)
\(=\left(x^3-3x^2+3x-1\right)+1\)
\(=\left(x-1\right)^3+1\)
Thay \(x=11\) vào biểu thức D ta được :
\(D=\left(11-1\right)^3+1=10^3+1=1000+1=1001\)
Vậy..................
Thay \(x=29\) vào C , ta được:
\(C=29^3+3.29+3.29^2+5\)
\(C=24389+87+2523+5\)
\(C=27004\)
Thay \(x=11\) vào D, ta được:
C=\(11^3-3.11^2+3.11\)
\(C=1331-363+33\)
\(C=1001\)
Thay x = 29 vào C ta có :
C = 293 + 3 . 29 + 3 . 292 + 5
C = 24839 + 87 + 2523 + 5
C = 270004
Thay x = 11 vào D ta có :
D = 113 - 3 .112 + 3 . 11
D = 1331 - 363 + 33
D = 1001