Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Mỹ Lệ
Xem chi tiết
Hoang Hung Quan
1 tháng 7 2017 lúc 20:34

Giải:

Ta có BĐT phụ: \(\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)

Áp dụng BĐT Cauchy - Schwarz ta có:

\(\dfrac{a}{b+c-a}+\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}\)

\(\ge3\sqrt[3]{\dfrac{abc}{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}}\)

\(\ge3\sqrt[3]{\dfrac{abc}{abc}}\ge3\) (Đpcm)


Quang huy Vu tien
Xem chi tiết
Trần Tuấn Hoàng
12 tháng 5 2022 lúc 21:58

-Đặt \(\left\{{}\begin{matrix}b+c-a=x>0\\c+a-b=y>0\\a+b-c=z>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2c=x+y\\2a=y+z\\2b=z+x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}c=\dfrac{x+y}{2}\\a=\dfrac{y+z}{2}\\b=\dfrac{z+x}{2}\end{matrix}\right.\)

\(A=\dfrac{a}{b+c-a}+\dfrac{b}{c+a-b}+\dfrac{c}{a+b-c}=\dfrac{\dfrac{y+z}{2}}{x}+\dfrac{\dfrac{z+x}{2}}{y}+\dfrac{\dfrac{x+y}{2}}{z}=\dfrac{1}{2}\left(\dfrac{y+z}{x}+\dfrac{z+x}{y}+\dfrac{x+y}{z}\right)=\dfrac{1}{2}\left[\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)+\left(\dfrac{x}{z}+\dfrac{z}{x}\right)\right]\ge\dfrac{1}{2}.\left(2+2+2\right)=3\left(đpcm\right)\)

-Dấu "=" xảy ra khi \(a=b=c\)

Big City Boy
Xem chi tiết
Akai Haruma
31 tháng 1 2021 lúc 1:33

Lời giải:

Do $a,b,c>0$ nên:\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1(1)\)

Vì $a,b,c$ là 3 cạnh tam giác nên theo BĐT tam giác thì:

$a+b>c\Rightarrow 2(a+b)>a+b+c\Rightarrow a+b>\frac{a+b+c}{2}$

$\Rightarrow \frac{c}{a+b}< \frac{2c}{a+b+c}$. Hoàn toàn tương tự với các phân thức còn lại:

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}< \frac{2a+2b+2c}{a+b+c}=2(2)\)

Từ $(1);(2)$ ta có đpcm.

Duong Thi Nhuong
Xem chi tiết
Đức Minh
8 tháng 3 2017 lúc 10:29

C1 : Áp dụng bất đẳng thức AM - GM ta có :

\(\sum\dfrac{a}{b+c-a}\ge3\sqrt[3]{\dfrac{abc}{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}}\ge3\)

Dấu = xảy ra khi và chỉ khi a = b = c.

C2 : Theo Cauchy Schwarz :

\(\sum \frac{a}{b+c-a}\geq \sum \frac{a^2}{ab+ac-a^2}\geq \frac{(a+b+c)^2}{2(ab+ca+bc)-a^2-b^2-c^2}\geq \frac{(a+b+c)^2}{\frac{2}{3}(a+b+c)^2-\frac{1}{3}(a+b+c)^2}=3\)

(đpcm).

Lê Thiên Anh
8 tháng 3 2017 lúc 10:35

Đặt b+c-a=x, c+a-b=y, a+b-c=z thì 2a =y+z, 2b +x+z, 2c +x+y. Ta có:

\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\)

= \(\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}\)

=\(\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\)(1)

\(\dfrac{x}{y}+\dfrac{y}{x}-2=\dfrac{x^2+y^2-2xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\ge0\)( vì xy >0)

\(\Rightarrow\)\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)(2)

Tương tự: \(\dfrac{z}{x}+\dfrac{x}{z}\ge2\)(3)

\(\dfrac{z}{y}+\dfrac{y}{z}\ge2\)(4)

Từ (1),(2),(3) và (4):

\(\Rightarrow\)\(\left(\dfrac{y}{x}+\dfrac{x}{y}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\)\(\ge6\)

Hay \(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}\) \(\ge6\)

Do đó: \(\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)(đpcm)

Nguyen Manh Dat
12 tháng 3 2017 lúc 19:43

Lan_nhi
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2020 lúc 23:26

\(VT=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\)

\(VT\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

\(\Rightarrow\) Tam giác là tam giác đều

Lê Huy Hoàng
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 1 2022 lúc 15:13

\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}=\dfrac{2}{b}\)

Tương tự:

\(\dfrac{1}{a+b-c}+\dfrac{1}{c+a-b}\ge\dfrac{2}{a}\) ; \(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{2}{c}\)

Cộng vế:

\(2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\right)\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\)

\(\Rightarrow\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

AHJHI
Xem chi tiết
Từ Đào Cẩm Tiên
3 tháng 7 2017 lúc 19:59

Thấy đún

Hỏi đáp Toán

Đức Trịnh Minh
Xem chi tiết
Diệp Minh Triết
Xem chi tiết