tìm tất cả các cặp số nguyên dương (x,y) sao cho \(x^2+8y\)và \(y^2+8x\)đều là số chính phuongư
Tìm tất cả các cặp số nguyên dương x, y sao cho x2 + 8y và y2+ 8x đều là số chính phương
Tìm tất cả các cặp số nguyên dương (x;y) sao cho x2 + 8y và y2 + 8x đều là số chính phương.
mn giúp với nha
mình tìm đc (1;1);(3;5);(11;21);(5;3);(21;11) nhưng ko biết phải giải thế nào mn giúp với
Sao câu dễ vậy mà không ai trả lời đc
Giả sử x lớn hơn y
Thấy x2 + 8y lớn hơn x2 và nhỏ hơn x2 + 8x nhỏ hơn (x + 4)2 suy ra nó nằm giữa 2 cái bình phương vừa nêu. Áp dụn chẵn lẻ loại 2 th suy ra 2y = x + 1 thay vào y2 + 8x là ra thôi. Thầy mình ra bài này thấy dễ quá định lên mạng chép mà mấy thằng thông minh không rảnh mà lên mạng. Với cả thay vào y2 + 8x kẹp tiếp bạn nhé rồi xét TH. Xong 😅
Tìm các số nguyên dương x,y sao cho x^2+8y và ^y2+8x đồng thời là số chính phương.
Không mất tính tổng quát giả sử x ≥ y
⇒x²<x²+8y≤x²+8x<(x+4)²
VÌ x²+8yx²+8y là số chính phương ⇒x²+8y=(x+1)2x²+8y=(x+1)2
hoặc x²+8y=(x+2)2x²+8y=(x+2)²
hoặc x²+8y=(x+3)²
Nếu x²+8y=(x+1)²
⇒8y=2x+1 (vô lí vì 1 bên lẻ 1 bên chẵn)
Nếu x²+8y=(x+2)² ⇒8y=4x+4 ⇒2y=x+1
⇒[(x+1)2]²+8x ⇒(x+12)²+8x là số chính phương.
⇒x²+34x+1=a² với a∈N
⇒(x+17)²−288=a²
⇒(x+17−a)(x+17+a)=288
Đến đây thì dễ rồi
Nếu x²+8y=(x+3)2 ⇒8y=6x+9x²+8y=(x+3)²
⇒8y=6x+9 (Vô lí vì VT chẵn còn VP thì không)
Giả sử x ≤ y
Ta có: y2 ≤ y2 + 8x ≤ y2 + 8y ≤ y2 + 8y + 16 = (y + 4)2
=> y2 + 8x = (y+1)²
(y+2)²
(y+3)²
Xét TH1 : y2 + 8x = (y + 1)2
=> y2 + 8x = y2 + 2y +1
=> 8x - 2y = 1
=> 4x - y = 1212 => Loại vì x, y ∈ N*
Xét TH2: y2 + 8x = (y + 2)2
=> y2 + 8x = y2 + 4x + 4
=> 8x - 4y = 4
=> 2x - y = 1 mà x;y ∈ N* nên ta có các trường hợp sau:
Nếu x = 1 => y = 1 => x2 + 8y = 9 (TM) ; y2 + 8x = 9 (TM)
Nếu x = 2 => y = 3 => x2 + 8y = 28 (Loại)
Nếu x ≥ 3 => 2x ≥ 6 => y ≤ 5 => Loại vì x≤ y
Xét TH3 : y2 + 8x = ( y +3 )2
=> y2 + 8x = y2 + 6y + 9
=> 8x - 6y = 9
=> 4x - 3y = 4,5 => Loại vì x,y ∈ N*
Vậy (x,y) = (1;1)
cái dới không correct
tìm tất cả các số nguyên dương x;y sao cho các số: (x^2) + 3y và y^2 +3x đều là các ssoos chính phương
Tìm x,y nguyên dương thoả mãn x^2+8y và y^2+8x là các số chính phương
Không mất tính tổng quát ta giả sử \(x\ge y\)
Ta có:
\(x^2< x^2+8y\le x^2+8x< x^2+8x+16=\left(x+4\right)^2\)
\(\Rightarrow x^2+8y=\left(x+1\right)^2or\left(x+2\right)^2or\left(x+3\right)^2\)
PS: Vì e là CTV nên a chỉ gợi ý thôi nha. Phần còn lại e thử tự nghĩ xem sao nhé. A giải quyết cho e phần khó nhất rồi đấy :)
Anh Alibaba Nguyễn, giải tìm x ntn vậy, em mới tìm được y thôi
tìm tất cả các số nguyên dương X,Ysao cho các số x^2+3*y và y^2+3*x đều là số chính phương?
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tìm tất cả các cặp số nguyên tô (x;y) sao cho x^2+8y=2012
8y&2012 chia hết cho 4=>x phải chia hết cho 2
x nguyên tố =>x=2
\(2^2+8y=2012\Rightarrow y=\frac{2008}{8}=251\)
=>(x,y)=(2,251) bạn tự kiểm tra lai xem 251 phải nguyên tố kO. nếu ko thì đề sai, vì nó là duy nhất
tìm tất cả các số nguyên dương x,y sao cho x2+3y và y2+3x là các số chính phương
TRẢ LỜI HỘ MK VS MK CÂN GẤP -_-