\(\left(m^2+1\right)x=10x+m^2+4m+3\) với giá trị nào của m thì pt có tập nghiệm là R
Cho phương trình sau :
\(\left(m+1\right)x^3+\left(3m-1\right)x^2-x-4m+1=0\) ( m là tham số )
a) Biến đổi pt (1) về pt tích
b) Với giá trị nào của m thì pt (1) có ba nghiệm phân biệt trong đó có hai nghiệm âm
\(\left(m+1\right)x^3+\left(3m-1\right)x^2-x-4m+1=0\)
<=> (m.x3 - m) + (x3 - x) + (3mx2 - 3m) - (x2 - 1) = 0
<=> m(x - 1)(x2 + x + 1) + x(x - 1).(x+1) + 3m(x - 1)(x+1) - (x -1)(x+ 1) = 0
<=> (x - 1).[m(x2 + x+ 1) + x(x+1) + 3m(x+ 1) - (x+1)] = 0
<=> (x - 1).(mx2 + mx + m + x2 + x + 3mx + 3m - x - 1) = 0
<=> (x - 1).[(m + 1)x2 + 4mx + 4m - 1)] = 0 (*)
b) (*) <=> x = 1 hoặc (m + 1)x2 + 4mx + 4m - 1) = 0 (1)
Để (*) có 3 nghiệm phân biệt trong đó có 2 ngiệm âm <=> (1) có 2 nghiệm âm phân biệt
<=> m+ 1 \(\ne\) 0 và \(\Delta\)' > 0 và x1.x2 > 0 và x1 + x2 < 0 trong đó x1; x2 là hai nghiệm của (1)
+) m + 1 \(\ne\) 0 <=> m \(\ne\) - 1
+) \(\Delta\)' = (2m)2 - (m + 1).(4m- 1) = 4m2 - 4m2 - 3m + 1 = -3m + 1 > 0 => m < 1/3
+) Theo hệ thức Vi ét ta có: x1 + x2 = \(-\frac{4m}{m+1}\); x1.x2 = \(\frac{4m-1}{m+1}\)
=> \(-\frac{4m}{m+1}\) < 0 và \(\frac{4m-1}{m+1}\) > 0
=> \(\frac{4m}{m+1}>0\) và \(\frac{4m+1}{m+1}\) > 0 => \(\frac{4m}{m+1}\) > 0 => 4m và m + 1 cùng dấu
=> m > 0 hoặc m < -1
Kết hợp điều kiện m < 1/3 và m \(\ne\) -1 => m < - 1 hoặc 0 < m < 1/3
Vậy...
đơn giản .tìm NCPT hoac TLCT gi do la co
a)\(\left(m+1\right)x^3-\left(m+1\right)x^2+4mx^2-4mx+\left(4m-1\right)x-\left(4m-1\right)=0\)
\(\left(x-1\right)\left[\left(m+1\right)x^2+4mx+4m-1\right]=0\)
b) => x =1 là 1 nghiệm của pt
Đẻ PT có 3 nghiệm phân biệt trong đoa có 2 nghiệm âm
=>\(\left(m+1\right)x^2+4mx+4m-1=0\)có 2 nghiệm phân biệt âm
+ m \(\ne\)-1
+ \(\Delta'=4m^2-\left(m+1\right)\left(4m-1\right)>0\)=>m<1/3
+ S =\(-\frac{4m}{m+1}<0\Rightarrow m<-1hoac;m>0\)
+P=\(\frac{4m-1}{m+1}>0\Leftrightarrow m<-1;hoac;m>\frac{1}{4}\)
=> m< -1 hoặc 1/4<m<1/3 thì PT có 3 nghiệm phân biệt trong đó 1 nghiệm x=1; hai nghiệm kia âm
Cho S là tập hợp tất cả caccs giá trị nguyên của tham ssos m sao cho bất phương trình \(\dfrac{(m+1)x^2+\left(4m+2\right)x+4m+4}{mx^2+2\left(2m+1\right)x+m}\le1\) có tập nghiệm là R . Tính số phần tử của tập hợp S
Tìm tất cả các giá trị của tham số m để bất pt
a) \(\left(x+m\right)m+x>3x+4\) có tập nghiệm là \(\left(-m-2;+\infty\right)\)
b) \(m\left(x-m\right)\ge x-1\) có tập nghiệm là \((-\infty;m+1]\)
c) \(m\left(x-1\right)< 2x-3\) có nghiệm
d) \(\left(m^2+m-6\right)x\ge m+1\) có nghiệm
a, \(\left(x+m\right)m+x>3x+4\)
\(\Leftrightarrow mx+m^2+x>3x+4\)
\(\Leftrightarrow\left(m-2\right)x+m^2-4>0\left(1\right)\)
Nếu \(m=0,\) bất phương trình vô nghiệm
Nếu \(m>0\)
\(\left(1\right)\Leftrightarrow x>-m-2\)
\(\Rightarrow x\in\left(-m-2;+\infty\right)\)
\(\Rightarrow m>0\) thỏa mãn yêu cầu bài toán
Nếu \(m< 0\)
\(\left(1\right)\Leftrightarrow x< -m-2\)
\(\Rightarrow\) Không thỏa mãn
Vậy \(m>0\)
b, \(m\left(x-m\right)\ge x-1\)
\(\Leftrightarrow mx-m^2\ge x-1\)
\(\Leftrightarrow\left(m-1\right)x\ge m^2-1\left(1\right)\)
Nếu \(m=1,\) bất phương trình thỏa mãn
Nếu \(m>1\)
\(\left(1\right)\Leftrightarrow x\ge m+1\)
\(\Rightarrow m>1\) không thỏa mãn yêu cầu
Nếu \(m< 1\)
\(\left(1\right)\Leftrightarrow x\le m+1\)
\(\Rightarrow m< 1\) thỏa mãn yêu cầu bài toán
Vậy \(m< 1\)
c, \(m\left(x-1\right)< 2x-3\)
\(\Leftrightarrow mx-m< 2x-3\)
\(\Leftrightarrow\left(m-2\right)x< m-3\)
Bất phương trình đã cho vô nghiệm khi \(\left\{{}\begin{matrix}m-2=0\\m-3< 0\end{matrix}\right.\Leftrightarrow m=2\)
Vậy yêu cầu bài toán thỏa mãn khi \(m\ne2\)
Với giá trị nào của m thì pt : \(x^4-\left(2m+1\right)x^2+m+3=0\) có 4 nghiệm phân biệt trong đó một nghiệm nhỏ hơn -2 còn 3 nghiệm kia lớn hơn -1.
Đặt \(x^2=t\ge0\Rightarrow f\left(t\right)=t^2-\left(2m+1\right)t+m+3=0\) (1)
Pt đã cho có 4 nghiệm pb khi (1) có 2 nghiệm pb đều dương
\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(2m+1\right)^2-4\left(m+3\right)>0\\t_1+t_2=2m+1>0\\t_1t_2=m+3>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{\sqrt{11}}{2}\)
Không mất tính tổng quát, giả sử 2 nghiệm dương của (1) là \(t_1< t_2\)
Khi đó 4 nghiệm của pt đã cho là: \(-\sqrt{t_2}< -\sqrt{t_1}< \sqrt{t_1}< \sqrt{t_2}\)
Do đó điều kiện đề bài tương đương:
\(\left\{{}\begin{matrix}-\sqrt{t_2}< -2\\-\sqrt{t_1}>-1\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}t_2>4\\t_1< 1\end{matrix}\right.\)
Bài toàn trở thành: tìm m để (1) có 2 nghiệm dương pb thỏa mãn: \(t_1< 1< 4< t_2\)
\(\Rightarrow\left\{{}\begin{matrix}1.f\left(1\right)< 0\\1.f\left(4\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1-\left(2m+1\right)+m+3< 0\\16-4\left(2m+1\right)+m+3< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>3\\m>\dfrac{15}{7}\end{matrix}\right.\) \(\Rightarrow m>3\)
Kết hợp \(m>\dfrac{\sqrt{11}}{2}\Rightarrow m>3\)
1.Cho phương trình:\(\left(m+1\right)x^2-2\left(m+1\right)+m-3=0\)0
a)Với giá trị nào của m thì pt có nghiệm kép.Tính nghiệm kép
b)Với giá trị nào của m thì pt có nghiệm:\(x_1x_2\)
2.\(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x+2}}\)
a)Rút gọn A
b)Tính x khi \(A=-\frac{1}{3}\)
Cho phương trình \(4m^2x-4x-3m=3\)
a)Giải pt với m=-1
b)Tìm giá trị của m để pt có nghiệm x=2
c)Tìm giá trị của m để pt tương đương với pt \(5x-\left(3x-2\right)=6\)
d)Tìm giá trị của m để pt vô nghiệm
e)Tìm giá trị của m để pt có nghiệm dương
a)Thay m=-1 vào phương trình ta đc:
\(4.\left(-1\right)^2.x-4x-3.\left(-1\right)=3\)
\(\Leftrightarrow4x-4x+3=3\)
\(\Leftrightarrow0x=0\)(Luôn đúng)
\(\Leftrightarrow\)Pt có vô số nghiệm
Vậy pt có vô số nghiệm.
b)Thay x=2 vào phương trình ta có:
\(4m^2.2-4.2-3m=3\)
\(\Leftrightarrow8m^2-8-3m=3\)
\(\Leftrightarrow8m^2-3m-11=0\)
\(\Leftrightarrow8m^2+8m-11m-11=0\)
\(\Leftrightarrow8m\left(m+1\right)-11\left(m+1\right)=0\)
\(\Leftrightarrow\left(m+1\right)\left(8m-11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m+1=0\\8m-11=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=-1\\m=\frac{11}{8}\end{cases}}\)
Vậy tập nghiệm của pt là S={-1;\(\frac{11}{8}\)}
c)Ta có:
\(5x-\left(3x-2\right)=6\)
\(\Leftrightarrow5x-3x+2=6\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
Có x=2 là nghiệm của pt \(5x-\left(3x-2\right)=6\)
Để \(4m^2x-4x-3m=3\Leftrightarrow5x-\left(3x-2\right)=6\)
\(\Leftrightarrow\)x=2 là nghiệm của \(4m^2x-4x-3m=3\)
Thay x=2 vào pt trên ta đc:
\(4m^2.2-4.2-3m=3\)(Giống câu b)
Vậy m=-1,m=11/8...
d)Có:\(4m^2x-4x-3m=3\)
\(\Leftrightarrow4x\left(m^2-1\right)=3+3m\)
Để pt vô nghiệm
\(\Leftrightarrow\hept{\begin{cases}m^2-1=0\\3+3m\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne-1\end{cases}}\)
\(\Leftrightarrow m=1\)
Vậy m=1 thì pt vô nghiệm.
cho pt \(x^2-2\left(m+1\right)x+m^2-1=0\)
a)giải pt (1) khi m=2
B) với giá trị nào của m thì pt(1) có 2 nghiệm x1+x2 thỏa mãn x1+x2;x1+x2=1
a, thay m=2 vào phương trình (1) ta được:
x^2-6.x+3=0
có: \(\Delta\)1=(-6)^2-4.3=24>0
vậy phương trình có 2 nghiệm phân biệt :
x3=(6+\(\sqrt{ }\)24)/2=3+\(\sqrt{ }\)6
x4=(6-\(\sqrt{ }\)24)/2=3-\(\sqrt{ }\)6
b, từ phương trình (1) ta có :
\(\Delta\)=[-2(m+1)]^2-4.(m^2-1)=(2m+2)^2-4m^2+4=4m^2+8m+4-4m^2+4
=8m+8
để pt(1) có 2 nghiệm x1,x2 khi \(\Delta\)\(\ge\)0<=>8m+8\(\ge\)0
<=>m\(\ge\)-1
m\(\ge\)-1 thì pt(1) có 2 nghiệm x1,x2
theo vi ét=>x1+x2=2m+2
lại có x1+x2=1<=>2m+2=1<=>m=-1/2(thỏa mãn)
vậy m=-1/2 thì pt(1) có 2 nghiệm x1+x2 thỏa mãn x1+x2=1
\(x^2-2\left(m+1\right)x+m^2-1=0\)(1)
a,Thay m=2 vào pt (1) có
\(x^2-2\left(2+1\right)x+2^2-1=0\)
⇔\(x^2-6x+3=0\)
⇔\(\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\) khi m=2
Cho hệ pt: \(\left\{{}\begin{matrix}3x-y=2\\9x-my=m\end{matrix}\right.\)
1. Với giá trị nào của m thì hệ phương trình vô nghiệm
2. Với giá trị nào của m thì hệ phương trình có vô số nghiệm?
3. Với giá trị nào của m thì hệ phương trình có nghiệm duy nhất
4. Tìm m để hệ có nghiệm duy nhất x> 0; y<0
Với giá trị nào của m thì phương trình có hai nghiệm phân biệt :
a) \(x^2-2\left(m+3\right)x+m^2+3=0\)
b) \(\left(m+1\right)x^2+4mx+4m-1=0\)
a. x2 – 2(m+3)x + m2+3=0 (1)
Ta có: Δ' = [-(m+3)]2 -1.(m2 +3) = m2 + 6m + 9 – m2 - 3
= 6m +6
Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:
Δ' > 0 ⇔ 6m + 6 > 0 ⇔ 6m > -6 ⇔ m > -1
Vậy m > -1 thì phương trình đã cho có 2 nghiệm phân biệt
b. (m+1)x2+4mx+4m -1 =0 (2)
Ta có: Δ' = (2m)2 – (m +1)(4m -1) = 4m2 – 4m2 + m – 4m +1
= 1 – 3m
Phương trình (2) có 2 nghiệm phân biệt khi và chỉ khi:
*m +1 ≠ 0 ⇔ m ≠ -1
và *Δ' > 0 ⇔ 1 -3m > 0 ⇔ 3m < 1 ⇔ m < 1/3
Vậy m < 1/3 và m ≠ -1 thì phương trình đã cho có 2 nghiệm phân biệt