chứng minh D = 3 + 3^3 + 3^5 + ... +3^2011 +3^2013+3^2015 chia hết cho 65
Chứng minh rằng:2011^3+2013^3+2017^3+2019^3 chia hết cho 2015
Cho S = \(3^1+3^3+3^5+.............+3^{2011}+3^{2013}+3^{2015}\)
Chứng tỏ S chia hết cho 70
Cho S = \(3^1+3^3+3^5+...+3^{2011}+3^{2013}+3^{2015}\).Chứng tỏ rằng:
a) S không chia hết cho 9
b) S chia hết cho 70
a) 3 ko chia hết cho 9
các hạng tử còn lại thì chia hết cho 9
vậy S ko chia hết cho 9
b) có 1008 số hạng
có thể chia làm 1008:3=336(nhóm)
Chia 3 vì tổng chia hết cho 70
bạn tự làm tiếp nhé ko thì gửi tin mk giải tiếp cho
Cho S = \(3^1+3^3+3^5+...+3^{2011}+3^{2013}+3^{2015}\).Chứng tỏ rằng:
a) S không chia hết cho 9
b) S chia hết cho 70
a)\(3^3+3^5+...+3^{2013}+3^{2015}\) chia hết cho 9
3 không chia hết cho 9 ⇒ S không chia hết cho 9
S = 3.(1 + \(3^2\) + \(3^4\) ) + ... + \(3^{2011}\) (1 + \(3^2\) + \(3^4\) ) (Do S có 1008 số hạng)
S = 3. 91 + ... + \(3^{2011}\).91
S chia hết cho 91 nên S chia hết cho 7 (91 = 7.13)
S = 3(1 + \(3^2\)) + ... + \(3^{2013}\) (1 + \(3^2\) ) (Do S có 1008 số hạng)
S = 3. 10 + ... + \(3^{2011}\).10
S chia hết cho 10. Do (7,10) =1 nên S chia hết cho 7.10 = 70
a) Cho S = 31+33+35+...+32011+32013+32015. Chứng tỏ:
-S không chia hết cho 9
-S chia hết cho 70
a) Cho S = 31+33+35+...+32011+32013+32015.Chứng tỏ
S không chia hết cho 9
S chia hết cho 90
\(S=3^1+3^3+3^3\left(3^2+3^4\right)+3^7\left(3^2+3^4\right)+...+3^{2011}\left(3^2+3^4\right)\)
\(=28+3^3.90+3^7.90+...+3^{2011}.90\)ko chia hết cho 9
cho S = 31+33+35+...+32011+32013+32015 chứng minh Schia hết cho 70
1, tìm số tự nhiên n sao cho 4n-5 chia hết cho2n - 1
2,cho S=3^1 + 3^3 + 3^5 + ... + 3^2011 + 3^2013 + 3 ^2015. Chứng tỏ
a, S không chia hết cho 9
b, S chia hết cho 70
Ta có: 4n-5 chia hết cho 2n-1
Mà 2(2n-1) chia hết cho 2n-1
hay 4n-2 chia hết cho 2n-1
Nên 4n-5-(4n-2) chia hết cho 2n-1
hay 4n-5-4n+2 chia hết cho 2n-1
-3 chia hết cho 2n-1
=> 2n-1 thuộc Ư(-3)={1;-1;3;-3}
Ta có bảng:
2n-1 1 -1 3 -3
n 1 0 2 -1(loại vì n thuộc N)
Vậy n ={1;0;2}
1. Đặt P là thương:
\(P=\frac{4n-5}{2n-1}\)
\(\Leftrightarrow P=\frac{4n-2-3}{2n-1}\)
\(\Leftrightarrow P=2-\frac{3}{2n-1}\)
P thuộc Z khi và chỉ khi: 2n-1 là ước của 3.
TH1: \(
2n-1=-1\)
\(\Leftrightarrow n=0\)
TH2: \(2n-1=-3
\)
\(\Rightarrow n=-1\) (Loại do n tự nhiên)
TH3: \(2n-1=1
\)
\(\Rightarrow n=1\)
TH4: \(2n-1=3\)
\(\Rightarrow n=2\)
Vậy có ba giá trị của n tự nhiên là 0; 1; 2.
1, tìm số tự nhiên n sao cho 4n-5 chia hết cho2n - 1
2,cho S=3^1 + 3^3 + 3^5 + ... + 3^2011 + 3^2013 + 3 ^2015. Chứng tỏ
a, S không chia hết cho 9
b, S chia hết cho 70
Ta có: 4n-5 chia hết cho 2n-1
Mà 2(2n-1) chia hết cho 2n-1
hay 4n-2 chia hết cho 2n-1
Nên 4n-5-(4n-2) chia hết cho 2n-1
hay 4n-5-4n+2 chia hết cho 2n-1
-3 chia hết cho 2n-1
=> 2n-1 thuộc Ư(-3)={1;-1;3;-3}
Ta có bảng:
2n-1 1 -1 3 -3
n 1 0 2 -1(loại vì n thuộc N)
Vậy n ={1;0;2}
cho S= 3^1+3^3+3^5+....+3^2011+3^2013+3^2015
chứng minh rằng S ko chia het cho9 va chia het cho 70
giai ro rang ra giup mik nha