(-a+b+c)-(-a+b)
giúp mình làm bài này đi rrooiif mình giúp cho
cho tam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
a) a(b-c)+c(a-b)=ab-ac+ca-cb=ab-cb=b(a-c)
b) a(b-c)-b(a+c)=ab-ac-ab-bc=-ac-bc=-c(a+b)
c) a(b+c)-b(a-c)=ab+ac-ab+bc=ac+bc=c(a+b)
d) a(b-c)-a(b+d)=ab-ac-ab-ad=-ac-ad=-a(a+d)
a) a(b - c) + c(a - b) = ab - ac + ac - bc = ab - bc = b(a - c)
b) a(b - c) - b(a + c) = ab - ac - ab - bc = -ac - bc = (a + b). (-c)
c) a(b + c) - b(a - c) = ab + ac - ab + bc = ac + bc = (a + b)c
d) a(b - c) - a(b + d) = ab - ac - ab - ad = -ac - ad = -a(c + d)
Đáp án: C
A ∩ B = {b; d}; A ∩ C = {a; b}; B ∩ C = {b; e}
A \ B = {a; c}; A \ C = {c; d}; B \ C = {d}
A ∪ B = {a; b; c; d; e}; A ∪ C = {a; b; c; d; e}
A ∩ (B \ C) = {d}. (A ∩ B) \ (A ∩ C) = {d}.
A \ (B ∩ C) = {a; c; d}. (A \ B) ∪ (A \ C) = {a; c; d}.
(A \ B) ∩ (A \ C) = {c}.
a. A ∩ (B \ C) = (A ∩ B) \ (A ∩ C) ={d} ⇒ a đúng.
b. A \ (B ∩ C)= {a; c; d} (A \ B) ∩ (A \ C)={c} ⇒ b sai.
c. A ∩ (B \ C) ={d} (A \ B) ∩ (A \ C)={c} ⇒ c sai
d. A \ (B ∩C) = (A \ B) ∪ (A \ C)= {a; c; d} ⇒ d đúng.
a, \(\left(a-b\right)+\left(c-d\right)=\left(a+c\right)-\left(b+d\right)\)
\(a-b+c-d=a+c-b-d\)
\(\Rightarrow VT=VP\left(đpcm\right)\)
b, \(\left(a-b\right)-\left(c-d\right)=\left(a+d\right)-\left(b+c\right)\)
\(a-b-c+d=a+d-b-c\)
\(\Rightarrow VT=VP\left(đpcm\right)\)
c, \(a-\left(b-c\right)=\left(a-b\right)+c=\left(a+c\right)-b\)
\(a-b+c=a-b+c=a+c-b\)
\(\Rightarrowđpcm\)
d, \(\left(a-b\right)-\left(b+c\right)+\left(c-a\right)-\left(a-b-c\right)=-\left(a+b-c\right)\)
\(a-b-b-c+c-a-a+b+c=-a-b+c\)
\(-a-b+c=-a-b+c\)
\(\Rightarrow VT=VP\left(đpcm\right)\)
e, \(-\left(-a+b+c\right)+\left(b+c-1\right)=\left(b-c+6\right)-\left(7-a+b\right)+c\)
\(a-b-c+b+c-1=b-c+6-7+a-b+c\)
\(a-1=-1+a\Rightarrow a-1=a+\left(-1\right)\Rightarrow a-1=a-1\)
\(\Rightarrow VT=VP\left(đpcm\right)\)
a)-b+c
d)-2a-2c
e)2b-2c
b)-2a+b
c)-a+c
f)a
-a-b+a+c=-b+c
-a+b-c-a-b-c=-2a-2c
a+b-a-b+a-c-a-c=-2c
-a-c+a-b-c=-2c+b
b-b-a+c=-a+c
a+b-c+a-b+c-b+c-a-a+b+c=2c
a. \(-a-\left(b-a-c\right)=-a-b+a+c=c-b\)
b. \(-\left(a-c\right)-\left(a-b+c\right)=-a-c-a+b-c=b-2a-2c\)
c. \(b-\left(b+a-c\right)=b-b-a+c=c-a\)
d.\(-\left(a-b+c\right)-\left(a+b+c\right)=-a+b-c-a-b-c=-2a-2c=-2\left(a+c\right)\)e. \(\left(a+b\right)-\left(a-b\right)+\left(a-c\right)-\left(a+c\right)=a+b-a+b+a-c-a-c=2b-2c=2\left(b-c\right)\)
f. \(\left(a+b-c\right)+\left(a-b+c\right)-\left(b+c-a\right)-\left(a-b-c\right)=a+b-c+a-b+c-b-c+a-a+b+c=2a\)
a) -a - (b - a - c)
= -a - b + a + c
=[ -a + a] - (b + c)
= 0 - (b + c)
= -(b + c)
d) -(a - b + c) - (a + b + c)
= -a + b - c - a - b - c
= (-a - a) + (b - b) + (c - c)
= (-a - a) + 0 + 0
= -a - a
e) (a + b) - (a - b) + (a - c) - (a + c)
= a + b - a + b + a - c - a - c
= (a - a) - (a + a) + (b + b) - (c - c)
= 0 + 2a + 2b - 0
= 2a + 2b
b) -(a - c) - (a - b + c)
= -a + c - a + b - c
= (-a - a) + (c - c) + b
= [(-a) + (-a)] + 0 + b
= 2(-a) + b
c) b - (b + a - c)
= b - b - a + c
= 0 - a - c
= -a - c
f) (a + b - c) + (a - b + c) - (b + c - a) - (a - b - c)
= 0 - (b + c - a) - (a - b - c)
= 0 - b - c + a - a + b - c
= -b - c + a - a + b - c
= (-b + b) - (c - c) + (a - a)
= 0 - 0 + 0
= 0