Giải bpt sau:
|5 - 2x| - 2|x - 1| ≤ 5x + 3
câu 1:giải các pt và bpt sau: a,17x - 5(x+3)= 2x + 5 b,3/x+2 - 5/x-2 = 11x + 23/(x+2)(x-2) c,5x + 7 ≥ 3(x-1) d,3x-1/x+1 = -2/5 e,(2x-1)(2x+1)= 4x2 + 3x + 2 f,x-3^3 -7+3x g,7x-5 < 2(4x-1)+7
a: =>17x-5x-15-2x-5=0
=>10x-20=0
=>x=2
b: =>\(\dfrac{3x-6-5x-10}{\left(x+2\right)\left(x-2\right)}=\dfrac{11x+23}{\left(x+2\right)\left(x-2\right)}\)
=>11x+23=-2x-16
=>13x=-39
=>x=-3(nhận)
c: =>5x+7>=3x-3
=>2x>=-10
=>x>=-5
d: =>5(3x-1)=-2(x+1)
=>15x-5=-2x-2
=>17x=3
=>x=3/17
e: =>4x^2-1-4x^2-3x-2=0
=>-3x-3=0
=>x=-1
g: =>7x-5-8x+2-7<0
=>-x-10<0
=>x+10>0
=>x>-10
câu 1:giải các pt và bpt sau:
a,17x - 5(x+3)= 2x + 5
b,3/x+2 - 5/x-2 = 11x + 23/(x+2)(x-2)
c,5x + 7 ≥ 3(x-1)
d,3x-1/x+1 = -2/5
e,(2x-1)(2x+1)= 4x2 + 3x + 2
f,x-3^3 -7+3x
g,7x-5 < 2(4x-1)+7
a: =>17x-5x-15-2x-5=0
=>10x-20=0
=>x=2
b: =>\(\dfrac{3x-6-5x-10}{\left(x+2\right)\left(x-2\right)}=\dfrac{11x+23}{\left(x+2\right)\left(x-2\right)}\)
=>11x+23=-2x-16
=>13x=-39
=>x=-3(nhận)
c: =>5x+7>=3x-3
=>2x>=-10
=>x>=-5
d: =>5(3x-1)=-2(x+1)
=>15x-5=-2x-2
=>17x=3
=>x=3/17
e: =>4x^2-1-4x^2-3x-2=0
=>-3x-3=0
=>x=-1
g: =>7x-5-8x+2-7<0
=>-x-10<0
=>x+10>0
=>x>-10
Giải các BPT sau:
a) \(16x-5x^2-3\le0\)
b) \(\dfrac{2x+5}{x-24}>1\)
`a)16x-5x^2-3 <= 0`
`<=>5x^2-16x+3 >= 0`
`<=>5x^2-15x-x+3 >= 0`
`<=>(x-3)(5x-1) >= 0`
`<=>` $\left[\begin{matrix} \begin{cases} x-3 \ge 0<=>x \ge 3\\5x-1 \ge 0<=>x \ge \dfrac{1}{5} \end{cases}\\ \begin{cases} x-3 \le 0<=>x \le 3\\5x-1 \le 0<=>x \le \dfrac{1}{5} \end{cases}\end{matrix}\right.$
`<=>` $\left[\begin{matrix} x \ge 3\\ x \le \dfrac{1}{5}\end{matrix}\right.$
Vậy `S={x|x >= 3\text{ hoặc }x <= 1/5}`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`b)[2x+5]/[x-24] > 1`
`<=>[2x+5]/[x-24]-1 > 0`
`<=>[2x+5-x+24]/[x-24] > 0`
`<=>[x+29]/[x-24] > 0`
`<=>` $\left[\begin{matrix} x < -29 \\ x > 24\end{matrix}\right.$
Vậy `S={x|x > 24\text{ hoặc }x < -29}`
giải bpt sau
a) |2x-3| > x-5
b) |3x -1| < (x-1)/2
c) |2x - 5| >= 7/2
d) |3-x| <= 2x+1
e) |2-4x| <= 3
f) |3-5x| >= 4
1, giải bpt sau
2x2 -5x+5>0
Ta có: \(2x^2-5x+5=2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}\right)+\dfrac{15}{8}=2\left(x-\dfrac{5}{4}\right)^2+\dfrac{15}{8}>0\)
Bài 1 : Giải các pt sau :
c) |2x - 1| = x + 2
Bài 2 : giải các BPT sau :
a) 2( 3x - 1 ) < x + 4
b) 5 -2x/3 + x ≥ x/2 + 1
Bài 1:
c) |2x - 1| = x + 2
<=> 2x - 1 = +(x + 2) hoặc -(x + 2)
* 2x - 1 = x + 2
<=> 2x - x = 2 + 1
<=> x = 3
* 2x - 1 = -(x + 2)
<=> 2x - 1 = x - 2
<=> 2x - x = -2 + 1
<=> x = -1
Vậy.....
Giai các bpt sau
a,\(\dfrac{5x^2-3}{5}+\dfrac{3x-1}{4}< \dfrac{x\left(2x+3\right)}{2}-5\)
b,\(\dfrac{5x-2}{-3}\)\(-\dfrac{2x^2-x}{-2}>\dfrac{x\left(1-3x\right)}{-3}-\dfrac{5x}{-4}\)
a: \(\Leftrightarrow4\left(5x^2-3\right)+5\left(3x-1\right)< 10x\left(2x+3\right)-100\)
\(\Leftrightarrow20x^2-12x+15x-5< 20x^2+30x-100\)
=>3x-5<=30x-100
=>30x-100>3x-5
=>27x>95
hay x>95/27
b: \(\Leftrightarrow4\left(5x-2\right)-6\left(2x^2-x\right)< 4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-8-12x^2+6x< 4x-12x^2-15x\)
=>26x-8<-11x
=>37x<8
hay x<8/37
Giải bpt
\(\frac{x+2}{\sqrt{2x+3}-\sqrt{x+1}}\ge\sqrt{2x^2+5x+3}+1\)
Giải bpt
x^3 - 2x^2 + 5x - 6 <0
|x-1| > | x+2| -3