Những câu hỏi liên quan
Lê Trường Lân
15 tháng 5 2020 lúc 17:04

Bài 3 thì \(\le1\)

Bài 4 thì \(\ge\frac{3}{4}\) nhé

Bình luận (0)
cao van duc
16 tháng 6 2019 lúc 14:35

https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/

Bình luận (0)
cao van duc
16 tháng 6 2019 lúc 14:37

bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo

Bình luận (0)
Tuấn Nguyễn
16 tháng 6 2019 lúc 17:58

Sử dụng bất đẳng thức AM-GN, ta có:

\(x^2y^2+1\ge2xy,\) \(y^2z^2+1\ge2yz,\) \(z^2x^2+1\ge2zx\)

Cộng các bất đẳng thức trên lại theo vế, sau đó cộng hai vế của bất đẳng thức thu được với \(x^2+y^2+z^2\), ta được:

\(\left(x+y+z\right)^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2+3=9\)

Từ đó suy ra: \(Q\le3\)

Mặt khác, dễ thấy dấu bất đẳng thức xảy ra khi \(x=y=z=1\)  nên ta có kết luận \(Max_Q=3\)

Ta sẽ chứng minh \(Q\ge\sqrt{6}\) với dấu đẳng thức xảy ra, chẳng hạn \(x=\sqrt{6},\) \(y=z=0.\) Sử dụng bất đẳng thức AM-GN, ta có:

\(2xy+x^2y^2\le x^2+y^2+x^2y^2\le x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)

Từ đó suy ra: \(xy\le\sqrt{7}-1< 2\)

Chứng minh tương tự, ta cũng có: 

\(yz< 2,\) \(zx< 2.\)

Do đó, ta có: 

\(Q^2=x^2+y^2+z^2+2xy+2yz+2zx\ge x^2+y^2+z^2+x^2y^2+y^2z^2+z^2x^2=6\)

Hay: \(Q\ge\sqrt{6}\)

\(\Rightarrow Min_Q=\sqrt{6}\)

Bình luận (0)
Phan Thị Thùy Trang
28 tháng 6 2017 lúc 21:02

bạn có thể giải giúp mình bài toán nay ko. giúp mình nha

Bình luận (0)
Phan Thị Thùy Trang
28 tháng 6 2017 lúc 21:04

bạn giải ra cho mình đc ko

Bình luận (0)
Vũ Thảo Thảo
14 tháng 1 2019 lúc 10:07

ai biết làm giúp với

Bình luận (0)
Thợ Đào Mỏ Padda
16 tháng 8 2017 lúc 9:46

SORY I'M I GRADE 6

Bình luận (0)
Lý hải Dương
3 tháng 5 2018 lúc 9:24

????????

Bình luận (0)
Nguyễn Khang
19 tháng 5 2020 lúc 19:31

mày hỏi vả bài kiểm tra à thằng điên 

Bình luận (0)
ミ★kͥ-yͣeͫt★彡
19 tháng 9 2019 lúc 9:17

Áp dụng BĐT Cauchy cho 3 số dương, ta được:

\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)

\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\sqrt[3]{\frac{1}{y\left(y+1\right)}.\frac{y}{2}.\frac{y+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)

\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\sqrt[3]{\frac{1}{z\left(z+1\right)}.\frac{z}{2}.\frac{z+1}{4}}=3.\sqrt{\frac{1}{4}}=\frac{3}{2}\)

\(\Rightarrow\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\)\(+\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\)

\(+\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}.3=\frac{9}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{2}+\frac{3}{2}\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\left(đpcm\right)\)

Bình luận (0)
Lầy Văn Lội
19 tháng 6 2017 lúc 23:39

có: \(x\left(2x-3\right)^2\ge0\Leftrightarrow4x^3-12x^2+9x\ge0\Leftrightarrow4x^3-12x^2+12x-4\ge3x-4\)

\(\Leftrightarrow4\left(x-1\right)^3\ge3x-4\)

\(\Leftrightarrow\left(1-x\right)^3\le1-\frac{3}{4}x\).

tương tự và cộng lại ta có ngay đpcm.

Dấu = xảy ra khi 2 số bằng 1,5; 1 số bằng 0

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN