Giải phương trình: a/x+a=(a-1/x-1)+(1/x+1) ( a là hằng)
Giải phương trình: \(\dfrac{1+a}{1-x}=1-a\) ( a là hằng)
ĐKXĐ: \(x\ne1\)
- Với \(a=\pm1\) pt vô nghiệm
- Với \(a\ne1\)
\(\Rightarrow1-x=\dfrac{1+a}{1-a}\)
\(\Leftrightarrow x=1-\dfrac{1+a}{1-a}=\dfrac{-2a}{1-a}\)
Vậy: \(a=\pm1\) hệ vô nghiệm
\(a\ne\pm1\) hệ có nghiệm duy nhất \(x=\dfrac{2a}{a-1}\)
Giải phương trình với a là hằng số \(\frac{1+a}{1-x}=1-a\)
giải phương trình
1) 1/a+b+c=1/a +1/b +1/x (a,b là hằng số; a,b khác 0)
2)1/(x+a)2-1 +1/(x+1)2-a2 = 1/x2-(a+1)2 +1/x2-(a-1)2 (a là hằng số)
cho biết a là hằng số giải phương trình sau
x (x+3) + a (a-3) = 2 (ax-1)
giải phương trình : \(\frac{1}{\left(x+a\right)^2-1}+\frac{1}{\left(x+1\right)^2-a^2}=\frac{1}{x^2-\left(a+1\right)^2}+\frac{1}{x^2-\left(a-1\right)^2}\)( a là hằng số)
Giải phương trình (x là ẩn số ; a,b,c là hằng số và đôi một khác nhau)
1/(a+b-x) = 1/a +1/b + 1/x
Giúp mình với
Cho PT: \(x^3+2ax^2-\left(a+1\right)^2x-2a.\left(a+1\right)^2=0\) ( a là hằng).
a) Giải và biện luận phương trình.
b) Với -1<a<1 nghiệm nào là nghiệm nhỏ nhất của phương trình
\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)
\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)
\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\)
Pt đã cho luôn có 3 nghiệm (như trên) với mọi a
\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)
\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất
giải phương trình sau : (1+a)/(1-x)=1-a ( với a là hằng số )
Đkxđ: x khác 1
Khi đó ta có:
\(\frac{1+a}{1-x}=1-a\)
⇔1+a=(1−x)(1−a)
⇔1+a=1-a-x+ax
⇔ax-2a-x=0
⇔(a-1)x-2a=0
Trường hợp 1:
a khác 1⇔a-1 khác 0
khi đó \(x=\frac{2a}{a-1}\)⇔Phương trình có nghiệm là \(x=\frac{2a}{a-1}\)
Trường hợp 2:
a =1⇔a-1=0
Khi đó ta có
0x-2=0
⇔-2=0(vô lí)
Vậy phương trình có 1 nghiệm là \(x=\frac{2a}{a-1}\)với điều kiện x khác 1
chúc bạn học tốt
thanks very much
Giải phương trình: \(\frac{1+a}{1-x}=1-a\) (a là hằng số)