Quoc Tran Anh Le

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Hi vọng chuyên mục đầu tiên của chuỗi cuộc thi sẽ mang lại niềm vui và trải nghiệm thú vị cho các bạn. Những câu hỏi được chọn sẽ khả năng cao được đưa lên chuyên mục Câu hỏi hay. Lưu ý mỗi ngày mình sẽ đăng tối đa 4 câu hỏi cùng một môn học.

Ngày mai đến chuyên mục Vật lí nhé :>

-------------------------------------------------------------------

[Toán.C6 _ 13.1.2021]

Người biên soạn câu hỏi: Hồng Phúc

Cho \(a,b,c,d\in\left[0;1\right]\).

Chứng minh rằng: \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\left(1-d\right)+a+b+c+d\ge1\).

[Toán.C7 _ 13.1.2021]

Người biên soạn câu hỏi: Hồng Phúc

Cho hình vuông ABCD cạnh 1. Gọi M,N di động trên AD, CD sao cho góc MBN là góc nửa vuông.

Chứng minh: \(\sqrt{2}-1\le S_{BMN}\le\dfrac{1}{2}\)

[Toán.C8 _ 13.1.2021]

Người biên soạn câu hỏi: Võ Phan Phương Ngọc.

Nhà An cách trường khoảng 3km. Trường An tổ chức học tập trải nghiệm cho khối 9 vào cuối học kỳ I. An rời nhà lúc 6 giờ sáng và xe du lịch đến đón học sinh để xuất phát từ trường đi đến Đà Lạt với vận tốc trung bình 45 km/h.

a) Viết công thức biểu diễn quãng đường y(km) từ nhà An đến Đà Lạt theo thời gian x(giờ) mà xe di chuyển từ trường đến Đà Lạt.

b) Biết khoảng cách từ nhà An đến Đà Lạt khoảng 318km và trên đường di chuyển xe có nghỉ ngơi 1 giờ 30 phút. Tính thời điểm xe phải xuất phát từ trường để đến nơi vào lúc 15 giờ.

[Toán.C9 _ 13.1.2021] 

Người biên soạn câu hỏi: Nguyễn Đăng Mạnh Dũng

Cho hình chữ nhật ABCD. Trên đường chéo BD lấy điểm P sao cho BP < DP. Gọi M là điểm đối xứng của A qua P. Gọi E và F là hình chiếu của M trên BC và CD.

a) Tứ giác BMCD là hình gì?

b) Chứng minh EF // AC.

c) Chứng minh ba điểm: E, F, P thẳng hàng.

d) Gọi I là giao điểm của BC và DM. Giả sử diện tích tam giác CIM = 16cm^2, diện tích tam giác BID = 25cm^2. Tính diện tích tứ giác BMCD.

------------------------------------------------------------------

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook


Những câu hỏi liên quan
Quoc Tran Anh Le

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Hi vọng chuyên mục đầu tiên của chuỗi cuộc thi sẽ mang lại niềm vui và trải nghiệm thú vị cho các bạn. Những câu hỏi được chọn sẽ khả năng cao được đưa lên chuyên mục Câu hỏi hay. 

*Lưu ý mình sẽ duyệt những câu hỏi đạt đến độ khó nhất định, để cả cộng đồng cùng giải. Những bài toán chưa được duyệt nhưng các bạn chưa có lời giải, các bạn hãy gửi trực tiếp câu hỏi lên Hoc24 nhé!

-------------------------------------------------------------------

[Toán.C10 _ 14.1.2021]

Người biên soạn câu hỏi: Bách Khoa Huỳnh

Cho một đa giác đều 12 cạnh. Hỏi có bao nhiêu cách tô màu cách đỉnh của đa giác đó bằng ba màu đỏ, xanh, vàng. Biết rằng hai cách tô được gọi là giống nhau nếu như tồn tại một phép quay hoặc tồn tại một phép lật mặt đa giác biến đa giác này thành đa giác kia.

[Toán.C11 _ 14.1.2021]

Người biên soạn câu hỏi: Trần Minh Hoàng

Cho a, b là số đo các góc nhọn thỏa mãn tan a =\(\dfrac{1}{2}\) và tan b = \(\dfrac{1}{3}\). Chứng minh a + b = \(45^o\).

------------------------------------------------------------------

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Sigma
15 tháng 1 lúc 8:48

Cho hỏi về C11. Phép lật mặt là gì vậy ạ :v

Bình luận (2)
hhy-chy
15 tháng 1 lúc 23:28

Toán.C11:

\(a+b=45^0\Rightarrow\cos\left(a+b\right)=\dfrac{\sqrt{2}}{2}\Leftrightarrow\cos a.\cos b-\sin a.\sin b=\dfrac{\sqrt{2}}{2}\) (1)

\(\tan a=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}\sin a=\dfrac{\sqrt{5}}{5}\\\cos\alpha=\dfrac{2}{5}\sqrt{5}\end{matrix}\right.\)

\(\tan b=\dfrac{1}{3}\Rightarrow\left\{{}\begin{matrix}\sin b=\dfrac{\sqrt{10}}{10}\\\cos b=\dfrac{3}{10}\sqrt{10}\end{matrix}\right.\)

Thay vô vế trái của 1 sẽ ra đpcm

P/s: Chắc phải có cách nào hay hơn cái cách toàn tính toẹt hết ra như vầy :v

 

Bình luận (0)
hhy-chy
15 tháng 1 lúc 23:35

À cái này cũng được, khỏi tính toán mất công nhiều, ghép công thức vô là ra

\(\tan\left(a+b\right)=1\)

\(tan\left(a+b\right)=\dfrac{\tan a+\tan b}{1-\tan a.\tan b}=1\Rightarrow dpcm\)

P/s: Mà bài này dành cho c2 hay c3 vậy? C2 thì chưa học biến đổi mấy ct lượng giác kia :v

Bình luận (3)
Quoc Tran Anh Le

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Hi vọng chuyên mục đầu tiên của chuỗi cuộc thi sẽ mang lại niềm vui và trải nghiệm thú vị cho các bạn. Những câu hỏi được chọn sẽ khả năng cao được đưa lên chuyên mục Câu hỏi hay.

Lưu ý, mỗi môn học có ít nhất 2 câu hỏi được duyệt mới đăng lên chuyên mục. Vậy hãy gửi ngay những câu bạn thấy hay và xứng đáng xuất hiện trong chuyên mục ngay :>

-------------------------------------------------------------------

[Toán.C4 _ 12.1.2021]

Người biên soạn câu hỏi: No name

Giải phương trình: \(\sqrt{5x^2+14x+9}+\sqrt{x^2-x-20}=5\sqrt{x+1}\)

[Toán.C5 _ 12.1.2021]

Người biên soạn câu hỏi: Quoc Tran Anh Le

Cho a,b,c đôi một khác nhau. Chứng minh rằng:

\(\dfrac{a^2+b^2}{\left(a-b\right)^2}+\dfrac{b^2+c^2}{\left(b-c\right)^2}+\dfrac{a^2+c^2}{\left(a-c\right)^2}\ge\dfrac{5}{2}\).

------------------------------------------------------------------

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Sigma
12 tháng 1 lúc 21:38

C4. Có cái tên của người biên soạn mà cũng giấu =))

Bình luận (4)
Quoc Tran Anh Le

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Hi vọng chuyên mục đầu tiên của chuỗi cuộc thi sẽ mang lại niềm vui và trải nghiệm thú vị cho các bạn. Những câu hỏi được chọn sẽ khả năng cao được đưa lên chuyên mục Câu hỏi hay. Tuy nhiên, với mục đích hỏi bài và trao đổi bài tập, các bạn hãy gửi câu hỏi lên hoc24 và cùng cộng đồng giải nhé!

-------------------------------------------------------------------

[Toán.C2 _ 10.1.2021] 

Người biên soạn câu hỏi: No name

Cho x, y, z > 0 thỏa mãn \(x^2+y^2+z^2+2xyz=1\). Tìm max:

P = xy + yz + zx - xyz.

[Toán.C3_10.1.2021]

Người biên soạn câu hỏi: Võ Phan Phương Ngọc

Cho tập hợp A = {-1,-2,...,-n}. Với mỗi tập con khác rỗng của A, chúng ta lập tích của các phần tử trong tập đó. Hỏi tổng của tất cả các tích thu được bằng bao nhiêu?

------------------------------------------------------------------

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Sigma
10 tháng 1 lúc 19:02

Vì C2 mình gửi nên mình làm câu 3:

Gọi S(n) là tổng tất cả các tích thu được.

Ta chứng minh bằng quy nạp rằng S(n) = -1 với mọi giá trị của n là số tự nhiên khác 0.

Thật vây, ta có S(1) = -1

Giả sử ta đã có S(n) = -1.

Ta cần chứng minh S(n + 1) = -1.

Ta thấy sau khi thêm tập hợp A = {-1; -2;,,,; -n} một phần tử -(n + 1), tập hợp A tăng thêm số tập hợp con bằng số tập hợp con của tập hợp A lúc đầu.

Do đó: \(S\left(n+1\right)-S\left(n\right)=S\left(n\right).\left[-\left(n+1\right)\right]-\left(n+1\right)=n+1-n-1=0\Rightarrow S\left(n+1\right)=S\left(n\right)=-1\).

Vậy ta có đpcm.

 

Bình luận (5)
Đạt Đậu
10 tháng 1 lúc 22:11

Toán C.2 :

Ta có : \(P=xy+yz+zx-xyz\Leftrightarrow2P=2.\left(xy+yz+zx\right)-2xyz\)

\(=2.\left(xy+yz+zx\right)+x^2+y^2+z^2-1\)

\(=\left(x+y+z\right)^2-1\)

Vì : \(x^2+y^2+z^2+2xyz=1\)

\(\Rightarrow z^2+2xyz=1-x^2-y^2\)

\(\Rightarrow z^2+2xyz+x^2y^2=1-x^2-y^2+x^2y^2\)

\(\Rightarrow\left(z+xy\right)^2=\left(1-x^2\right)\left(1-y^2\right)\le\left(\dfrac{2-x^2-y^2}{2}\right)^2\)

\(\Rightarrow z+xy\le\dfrac{2-x^2-y^2}{2}\Rightarrow z\le\dfrac{2-x^2-y^2-2xy}{2}=\dfrac{2-\left(x+y\right)^2}{2}\)

Có : \(\left(x+y-1\right)^2\ge0\)

\(\Leftrightarrow\left(x+y\right)^2-2.\left(x+y\right)+1\ge0\)

\(\Leftrightarrow x+y\le\dfrac{\left(x+y\right)^2+1}{2}\)

\(\Leftrightarrow x+y+z\le\dfrac{\left(x+y\right)^2+1}{2}+\dfrac{2-\left(x+y\right)^2}{2}=\dfrac{3}{2}\)

\(\Rightarrow\left(x+y+z\right)^2-1\le\dfrac{5}{4}\) 

\(\Rightarrow2P\le\dfrac{5}{4}\Rightarrow P\le\dfrac{5}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{2}\)

Bình luận (5)
Lê Huỳnh Tú
10 tháng 1 lúc 23:26

E ms học code nên e hay tìm các trang toán để lập code giải ạ. Ad có thể xem giúp e bài code này dc k ạ

#include<iostream> using namespace std; int main() {int n; cin >> n;int tong = 0, tich = 1, a[n];for(int i = 0; i <= n - 1; i ++) a[i] = -(i + 1);for(int i = 1; i <= n; i ++) {for(int j = 0; j <= n - i; j ++) {tich = 1;for(int k = j; k <= k + i - 1; k ++) {tich = tich * a[j];}tong = tong + tich;}}cout << tong;return 0;}
Bình luận (3)
Quoc Tran Anh Le

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Những câu hỏi được chọn sẽ khả năng cao được đưa lên chuyên mục Câu hỏi hay. Lưu ý mình sẽ duyệt những câu hỏi đạt đến độ khó nhất định, để cả cộng đồng cùng giải. Những bài toán chưa được duyệt nhưng các bạn chưa có lời giải, các bạn hãy gửi trực tiếp câu hỏi lên Hoc24 nhé!

-------------------------------------------------------------------

[Văn.C12 _ 16.1.2021]

Người biên soạn câu hỏi: Quoc Tran Anh Le

Tình bạn giúp chúng ta vượt qua bao thăng trầm trong cuộc sống. Tình bạn là "thứ vật chất" thiêng liêng nhất mà mỗi con người chúng ta sở hữu. Tuy nhiên, cuộc sống tình bạn ngày nay liệu có còn đẹp như trong thơ văn thời xưa? Tác giả Trong Nghia Huynh đã chia sẻ những cảm xúc của mình:

"Đêm nay, tớ đọc lại tin nhắn cũ

Mấy năm rồi, vỏn vẹn chỉ vài câu

Tin nhắn cuối, cách đây cũng khá lâu

Vẫn một chiều hệt như lúc bắt đầu

Tớ ngày xưa, nhắn tin trông thật trẩu

Văn lai láng, mỗi tin thiệt nhiều dòng

Còn cậu thì nhắn tin trông thật ngầu

"Ừ" "Sao?" "Hả", vài ba từ là xong

Dần tớ tập, nén câu chữ vào trong

Trả lại cậu, lời xã giao sáo rỗng

Dần tớ tập, khóa cảm xúc vào lòng

Vùi chết nó, như người bị chôn sống

............

Mấy năm rồi, nó vẫn nuôi hy vọng

Mặc lý trí, đã từ bỏ từ lâu...

Đêm nay tớ đọc lại tin nhắn cũ

Định mở lời, hỏi thăm nhưng lại thôi

Đêm nay tớ đọc lại tin nhắn cũ

Biết bao giờ, nhận được... tin nhắn mới...từ cậu"

Đọc những dòng này, các bạn chắc hẳn cũng sẽ có những suy ngẫm về cuộc sống tình bạn ngày nay. Một câu hỏi mà ai trong chúng ta chắc hẳn đều đang thắc mắc là: Thế nào là tình bạn?

Cảm nghĩ, quan điểm và góc nhìn của các bạn về vấn đề này sau khi đọc bài thơ là gì? Hãy chia sẻ với cộng đồng nhé!

------------------------------------------------------------------

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

hhy-chy
16 tháng 1 lúc 15:48

Sau khi đọc bài thơ này, chỉ một câu thôi : Vô cùng đồng tình 

Tình bạn....bây giờ khi nói ra từ này, không biết là có còn một chút sinh khí trong nó nữa không. Hay nó đã lặng lẽ biến mất từ lúc nào mà ta ko biết, ta ko còn cảm nhận thấy nó nữa. Nó xa thật xa mà gần cũng thật gần, hoặc như một chiếc lông vũ, ướt thì có thể giữ lại, chứ khô rồi, lại bay đi ko chút dấu vết....

P/s: Dành nửa tiếng ngồi chém văn mà kết cục là xóa hết đi, đọng lại mấy dòng như này thôi :)

 

Bình luận (1)

Tình bạn là điều khó giải thích nhất trên thế giới. Đó không phải là thứ bạn học được ở trường.

Bạn bè là một phần quan trọng trong cuộc sống của hầu hết mọi người. Nghiên cứu gần đây đã chỉ ra rằng có bạn bè làm tăng cơ hội hạnh phúc của chúng ta.

Một người bạn tốt có thể là người giúp đỡ khi khó khăn hoặc người mà bạn có thể dựa vào, cùng nhau tạo những kỷ niệm, khoảnh khắc đặc biệt.

Tình bạn là sự gắn kết đẹp đẽ giữa hai hay nhiều người trong cuộc sống:

Một người có thể hiểu mọi vấn đề đằng sau những giọt nước mắt của bạn.Một người chỉ ra lỗi của bạn và giúp bạn sửa lỗi đúng cách.Một người hạnh phúc, tự hào trước thành công của bạn.Một người ngồi bên cạnh bạn và khuyến khích bạn.Một người hy sinh hạnh phúc của riêng mình cho thành công của bạn.Một người bạn thực sự là người khiến bạn cảm thấy thoải mái khi là chính mình.

Sau khi đọc bài thơ thì mình gần như đã khóc ý , vì nó khiến mình nhớ lại tình bạn đẹp đẽ giữa mình và một bạn khác và mình đã để nó bị tan vỡ bởi tính ích kỉ của mình.........

(Đây là nhg lời nói thật lòng và từ trái tim mình ra !!!)

Bình luận (0)
Quoc Tran Anh Le

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form: 

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

Những câu hỏi được chọn sẽ khả năng cao trở thành những bài đặc biệt được Cộng đồng lưu ý giải và thảo luận. Những bài toán chưa được duyệt nhưng các bạn chưa có lời giải, các bạn hãy gửi trực tiếp câu hỏi lên Hoc24 nhé!

-------------------------------------------------------------------

[Toán.C13 _ 17.1.2021]

Người biên soạn câu hỏi: Nguyễn Trúc Giang

Cho hình bình hành ABCD có M, N, P, Q là trung điểm của AB, BC, CD, AD. Biết diện tích ABC = 60 m2. Tính diện tích MNPQ (Giải bằng nhiều cách).

[Toán.C14 _ 17.1.2021]

Người biên soạn câu hỏi: Nguyễn Trọng Chiến

Tìm tất cả các số nguyên dương N có 2 chữ số sao cho tổng tất cả các chữ số của số \(10^N-N\) chia hết cho 170.

Quoc Tran Anh Le

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form để nhận được sự ưu tiên giúp đỡ đến từ cộng đồng :>

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Toán.C16 _ 19.1.2021]

Người biên soạn câu hỏi: Lê Hà Vy

Trích Vietnam TST, 1996: Chứng minh rằng với x,y,z là các số thực bất kì ta có bất đẳng thức:

\(6\left(x+y+z\right)\left(x^2+y^2+z^2\right)\le27xyz+10\left(x^2+y^2+z^2\right)^{\dfrac{3}{2}}\).

[Toán.C17 _ 19.1.2021]

Người biên soạn câu hỏi: Lê Hà Vy

Trích IMO, 1983: Chứng minh rằng nếu a,b,c là ba cạnh của một tam giác thì:

\(a^2b\left(a-b\right)+b^2c\left(b-c\right)+c^2a\left(c-a\right)\ge0\).

[Toán.C18 _ 19.1.2021]

Người biên soạn câu hỏi: Nguyễn Bình An

Trích IMO, 2001: Cho a,b,c > 0. Chứng minh rằng:

\(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge1.\)

[Toán.C19 _ 19.1.2021]

Người biên soạn câu hỏi: Quoc Tran Anh Le

Trích Vasile Cirtoaje: Cho a,b,c,d lớn hơn hoặc bằng 0 thỏa mãn a + b + c + d = 4. Chứng minh rằng:

\(16+2abcd\ge3\left(ab+ac+ad+bc+bd+cd\right)\).

*4 câu hỏi này xin được tặng các bạn một chút GP khi các bạn giải được hoàn hảo. Mong các thầy cô sẽ trao giải cho các bạn!

Hồng Phúc
19 tháng 1 lúc 18:46

[Toán.C17_19.1.2021]

Gọi x, y, z là các số nguyên dương thỏa mãn \(a=x+y;b=y+z;c=z+x\)

Khi đó: \(a^2b\left(a-b\right)+b^2c\left(b-c\right)+c^2a\left(c-a\right)\ge0\left(1\right)\)

\(\Leftrightarrow\left(x+y\right)^2\left(y+z\right)\left(x-z\right)+\left(y+z\right)^2\left(z+x\right)\left(y-x\right)+\left(z+x\right)^2\left(x+y\right)\left(z-y\right)\ge0\)

\(\Leftrightarrow x^3z+y^3x+z^3y\ge x^2yz+xy^2z+xyz^2\)

\(\Leftrightarrow\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge x+y+z\left(2\right)\)

Áp dụng BĐT BSC:

\(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)

\(\Rightarrow\left(2\right)\) đúng \(\Rightarrow\left(1\right)\) đúng

Bình luận (1)
tthnew
20 tháng 1 lúc 20:01

VietNam TST, 1996.

Chuẩn hóa \(x^2+y^2+z^2=1.\) Cần chứng minh:

\(6\left(x+y+z\right)\le27xyz+10\)

Ta có: \(1=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Rightarrow x^2y^2z^2\le\dfrac{1}{27}\Rightarrow-\dfrac{\sqrt{3}}{9}\le xyz\le\dfrac{\sqrt{3}}{9}\)

Do đó: \(VP\ge27\cdot\left(-\dfrac{\sqrt{3}}{9}\right)+10=10-3\sqrt{3}>0.\)

Nếu $x+y+z<0$ thì $VP>0>VT$ nên ta chỉ xét khi $x+y+z\geq 0.$

Đặt $\sqrt{3}\geq p=x+y+z>0;q=xy+yz+zx,r=xyz.$

Bất đẳng thức cần chứng minh tương đương với:\(6p\le27r+10\quad\left(1\right)\)

Mà \(x^2+y^2+z^2=1\Leftrightarrow p^2-2q=1\Rightarrow q=\dfrac{\left(p^2-1\right)}{2}\quad\left(2\right)\)

Ta có: $$(x-y)^2(y-z)^2(z-x)^2\geq 0.$$

Chuyển sang \(\textit{pqr}\) và kết hợp với $(2)$ suy ra \({\dfrac {5\,{p}^{3}}{54}}-\dfrac{p}{6}-{\dfrac {\sqrt {2 \left(3- {p}^{2} \right) ^{3}}}{54}}\leq r \)

Từ đây thay vào $(1)$ cần chứng minh:

$$\dfrac{5}{2}p^3-\dfrac{21}{2}p+10\geqslant \dfrac{1}{2}\sqrt{2\left(3-p^2\right)^3}$$

Hay là $$\dfrac{1}{4} \left( 27\,{p}^{4}+54\,{p}^{3}-147\,{p}^{2}-148\,p+346 \right) \left( p-1 \right) ^{2}\geqslant 0.$$

Đây là điều hiển nhiên.

Bình luận (2)
tthnew
20 tháng 1 lúc 19:45

Câu đầu tiên hình không phải VietNam TST 1996 đâu anh. Bất đẳng thức VietNam TST 1996 là:

$$(a+b)^4+(b+c)^4+(c+a)^4\geqslant \dfrac{4}{7}\left(a^4+b^4+c^4\right)$$

 

Bình luận (3)
Quoc Tran Anh Le

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha. Các bạn hãy giúp đỡ chúng mình phát triển cuộc thi :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form để nhận được sự ưu tiên giúp đỡ đến từ cộng đồng :> Chuyên mục đang cần câu hỏi hay, mong các bạn ủng hộ :>

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Toán.C22 _ 21.1.2021]

Cho tam giác ABC không tù. Chứng minh rằng:

\(\dfrac{sinB.sinC}{sinA}+\dfrac{sinC.sinA}{sinB}+\dfrac{sinA.sinB}{sinC}\ge\dfrac{5}{2}\)

[Toán.C23 _ 21.1.2021]

Trích Vietnam TST, 2001: Cho a,b,c > 0 và 21ab + 2bc + 8ca \(\le12\). Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\).

[Toán.C24 _ 21.1.2021]

Trích VEMC, 2018

Hai nhà toán học người Nga gặp nhau trên một chuyến bay.

"Nếu tôi nhớ không nhầm thì ông có ba cậu con trai," nhà toán học tên là Ivan nói. "Đến nay chúng bao nhiêu tuổi rồi?"

"Tích số tuổi của chúng là 36," nhà toán học tên là Igor đáp, "và tổng số tuổi của chúng đúng bằng ngày hôm nay."

"Tôi xin lỗi," Ivan nói sau một phút suy nghĩ, "nhưng từ những thông tin đó tôi vẫn không thể biết được tuổi của chúng."

"À tôi quên không kể cho ông, đứa con nhỏ tuổi nhất của tôi có mái tóc màu đỏ."

"A, giờ thì rõ rồi," Ivan nói. "Giờ tôi đã biết chính xác ba cậu con trai của ông bao nhiêu tuổi."

Làm sao mà Ivan biết được?

[Toán.C25 _ 21.1.2021]

Một chuyên gia về xác suất nhờ một người tung đồng xu 200 lần rồi ghi lại kết quả. Khi người đó đưa kết quả cho anh ta, vừa nhìn một cái đã biết người kia bịa ra chứ không phải thật sự tung cả ngần ấy lần. Bạn có biết anh ta làm thế nào không?

Hồng Phúc
21 tháng 1 lúc 16:54

[Toán.C23 _ 21.1.2021]

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y};c=\dfrac{1}{z}\)

Giả thiết trở thành \(2x+9y+21z\le12xyz\)

\(\Leftrightarrow3z\ge\dfrac{2x+8y}{4xy-7}\)

Áp dụng BĐT Cosi và BĐT BSC:

Khi đó \(P=x+2y+3z\)

\(\ge x+2y+\dfrac{2x+8y}{4xy-7}\)

\(=x+\dfrac{11}{2x}+\dfrac{1}{2x}\left(4xy-7+\dfrac{4x^2+28}{4xy-7}\right)\)

\(\ge x+\dfrac{11}{2x}+\dfrac{1}{x}\sqrt{4x^2+28}\)

\(=x+\dfrac{11}{2x}+\dfrac{3}{2}\sqrt{\left(1+\dfrac{7}{9}\right)\left(1+\dfrac{7}{x^2}\right)}\)

\(\ge x+\dfrac{11}{2x}+\dfrac{3}{2}\left(1+\dfrac{7}{3x}\right)\)

\(\ge x+\dfrac{9}{x}+\dfrac{3}{2}\ge\dfrac{15}{2}\)

\(\Rightarrow minP=\dfrac{15}{2}\Leftrightarrow a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\)

Mấy câu có thêm dòng trích từ mấy đề quốc gia, quốc tế gì gì đó đâm ra nản luôn.

Bình luận (3)
Sigma
21 tháng 1 lúc 18:31

C23 cách khác: Điểm rơi \(a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\) nên ta đặt \(a=\dfrac{1}{3}x;b=\dfrac{4}{5}y;c=\dfrac{3}{2}z\).

Ta có \(21ab+2bc+8ca\le12\Leftrightarrow\dfrac{28}{5}xy+\dfrac{12}{5}yz+4zx\le12\Leftrightarrow7xy+3yz+5zx\le15\).

Áp dụng bất đẳng thức AM - GM: \(15\ge7ab+3bc+5ca\ge15\sqrt[15]{\left(xy\right)^7.\left(yz\right)^3.\left(zx\right)^5}=15\sqrt[15]{x^{12}y^{10}z^8}\)

\(\Rightarrow x^6y^5z^4\le1\);

\(P=\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=3x+\dfrac{5}{2}y+2z=\dfrac{1}{2}\left(\dfrac{6}{x}+\dfrac{5}{y}+\dfrac{4}{z}\right)\ge\dfrac{1}{2}.15\sqrt[15]{\left(\dfrac{1}{x}\right)^6.\left(\dfrac{1}{y}\right)^5.\left(\dfrac{1}{z}\right)^4}=\dfrac{15}{2}.\sqrt[15]{\dfrac{1}{x^6y^5z^4}}\ge\dfrac{15}{2}\).

Đẳng thức xảy ra khi \(x=y=z=1\) tức \(a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\).Vậy Min P = \(\dfrac{15}{2}\) khi \(a=\dfrac{1}{3};b=\dfrac{4}{5};c=\dfrac{3}{2}\).

P/s: Lời giải nhìn có vẻ đơn giản nhưng muốn tìm điểm rơi thì phải dùng bđt AM - GM suy rộng.

 

 

Bình luận (7)
tthnew
21 tháng 1 lúc 19:17

Giả sử $P$ đạt Min tại $a=x,b=y,c=z.$ Khi đó: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}=1\)\(21xy+2yz+8zx=12\) $(\ast)$

Ta có:\(12=21ab+2bc+8ca=21xy.\left(\dfrac{ab}{xy}\right)+2yz\cdot\left(\dfrac{bc}{yz}\right)+8zx\cdot\left(\dfrac{ca}{zx}\right)\)

\(\ge\left(21xy+2yz+8zx\right)\sqrt[\left(21xy+2yz+8zx\right)]{\left(\dfrac{ab}{xy}\right)^{21xy}\cdot\left(\dfrac{bc}{yz}\right)^{2yz}\cdot\left(\dfrac{ca}{zx}\right)^{8zx}}\quad\)   

\(=\left(21xy+2yz+8zx\right)\sqrt[\left(21xy+2yz+8zx\right)]{\left(\dfrac{a}{x}\right)^{21xy+8zx}\cdot\left(\dfrac{b}{y}\right)^{21xy+2yz}\cdot\left(\dfrac{c}{z}\right)^{2yz+8zx}}\quad\left(1\right)\quad\)

Lại có:

\(P=\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=\dfrac{1}{x}\cdot\dfrac{x}{a}+\dfrac{2}{y}\cdot\dfrac{y}{b}+\dfrac{3}{z}\cdot\dfrac{z}{c}\)

\(\ge\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}\right)\sqrt[\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}\right)]{\left(\dfrac{x}{a}\right)^{\dfrac{1}{x}}\cdot\left(\dfrac{y}{b}\right)^{\dfrac{2}{y}}\cdot\left(\dfrac{z}{x}\right)^{\dfrac{3}{z}}}\quad\left(2\right)\)

\(=\left(21xy+2yz+8zx\right)\sqrt[\left(21xy+2yz+8zx\right)]{\left(\dfrac{a}{x}\right)^{21xy+8zx}\cdot\left(\dfrac{b}{y}\right)^{21xy+2yz}\cdot\left(\dfrac{c}{z}\right)^{2yz+8zx}}\quad\left(1\right)\quad\)

Từ $(1)$ và $(2)$ rõ ràng cần chọn $x,y,z$ sao cho:

\(\dfrac{{\left( {21{\mkern 1mu} xy + 8{\mkern 1mu} zx} \right)}}{{\dfrac{1}{x}}} = {\mkern 1mu} \dfrac{{\left( {21{\mkern 1mu} xy + 2{\mkern 1mu} yz} \right)}}{{\dfrac{2}{y}}} = \dfrac{{\left( {2yz + 8zx} \right)}}{{\dfrac{3}{z}}}\)

Suy ra \(x={\dfrac {5\,y}{12}},y=y,z={\dfrac {15\,y}{8}} \) thế ngược lại $(\ast)$ ta được $x=\dfrac{1}{3};y=\dfrac{4}{5};z=\dfrac{3}{2}$ từ đây dẫn đến lời giải của bạn Tan Thuy Hoang.

Lời giải tuy ngắn nhưng rất kỳ công:D

 

Bình luận (7)
Quoc Tran Anh Le

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha. Các bạn hãy giúp đỡ chúng mình phát triển cuộc thi :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form để nhận được sự ưu tiên giúp đỡ đến từ cộng đồng :>

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Hóa.C20 _ 20.1.2021]

Người biên soạn câu hỏi: Đỗ Quang Tùng

Công thức C2H15 ứng với 3 chất A, B, C có công thức cấu tạo khác nhau trong 3 chất này khi tác dụng với Cl2 có ánh sáng: chất A tạo ra 4 dẫn xuất monoclo, chất B chỉ ra 1 dẫn xuất duy nhất, chất C tạo ra dẫn suất monoclo. Các chất A, B, C là gì?

[Hóa.C21 _ 20.1.2021]

Người biên soạn câu hỏi: Nguyễn Bình An

Khi được yêu cầu cách trình bày cách pha chế 50ml dung dịch CuSO4 0,1M, một bạn học sinh đã làm như sau:

"Cần 1,25g bột CuSO4.5H2O cho vào cốc thủy tinh có chia vạch dung tích 100ml, dùng ống đong để đong 50ml nước và đổ vào cốc, khuấy đều cho tan. Ta thu được 50ml dung dịch CuSO4 nồng độ 0,1M."

Hãy cho biết bạn học sinh trên có chính xác không? Hãy sửa lại lỗi sai (nếu có).

traitimtrongvang
20 tháng 1 lúc 23:00

Câu 21 :

Bạn học sinh trên làm không chính xác. Lỗi sai ở chỗ là bạn học sinh quên rằng trong CuSO4.5H2O cũng có chứa nước.

\(n_{CuSO_4.5H_2O} = n_{CuSO_4} = 0,1.0,05 = 0,005(mol)\)

\(\Rightarrow n_{H_2O} = 0,005.5 = 0,025(mol)\\ m_{H_2O} = 0,025.18 = 0,45(gam)\\\Rightarrow V_{H_2O} = \dfrac{m}{D} = \dfrac{0,45}{1} = 0,45(ml) \)

Thể tích nước cần thêm : \(V_{nước} = 50 - 0,45 = 49,55(ml)\)

Bình luận (2)
Quang Nhân
20 tháng 1 lúc 23:14

C20: Bạn nào đưa đề mà sai nhiều chổ thế nhỉ C5H12 , 4 dẫn xuất , 1 dẫn xuất và 3 dẫn xuất nhé.

Tính chất hóa học của Pentan C5H12 | Tính chất hóa học, vật lí, điều chế, ứng dụng

Chất A + Cl2 => 4 dẫn xuất 

=> A là : Chất thứ hai 

Chất B + Cl2 => 3 dẫn xuất 

=> B là : Chất thứ nhất 

Cuối cùng là C 

 

 

Bình luận (5)
Quoc Tran Anh Le

Like và follow fanpage để cập nhật những tin tức mới nhất về cuộc thi nha. Các bạn hãy giúp đỡ chúng mình phát triển cuộc thi :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Nếu bạn muốn đề xuất câu hỏi xuất hiện trong chuyên mục này các bạn hãy gửi qua form để nhận được sự ưu tiên giúp đỡ đến từ cộng đồng :> Chuyên mục đang cần câu hỏi hay, mong các bạn ủng hộ :>

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Toán.C27 _ 22.1.2021]

Người biên soạn câu hỏi: Võ Phan Phương Ngọc

Cho đường tròn (O) và điểm P nằm trong đường tròn  P không trùng với O). Xác định vị trí của dây đi qua điểm P sao cho dây đó có độ dài nhỏ nhất.

[Toán.C28 _ 22.1.2021]

Người biên soạn câu hỏi: Trung Chanh Trinh

Trích Đề thi HSG Toán 9, tỉnh Quảng Bình, 2020-2021:

Cho a,b,c là các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=2\).

Chứng minh: \(\dfrac{a+b}{\sqrt{a}+\sqrt{b}}+\dfrac{b+c}{\sqrt{b}+\sqrt{c}}+\dfrac{c+a}{\sqrt{c}+\sqrt{a}}\le4\left[\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{b}}+\dfrac{\left(\sqrt{b}-1\right)^2}{\sqrt{c}}+\dfrac{\left(\sqrt{c}-1\right)^2}{\sqrt{a}}\right]\)

Bánh Đậu Xanh
23 tháng 1 lúc 15:39

Cái này thi Tiếng Anh có giải không ạ

Bình luận (0)

C27.Gọi AB là dây vuông góc với OP tại P , và dây CD là dây bất kỳ đi qua P vàkhông trùng với AB .

 

Kẻ \(OH\perp CD\)

 

\(\Delta OHP\) vuông tại H\(\Rightarrow\) OH < OP \(\Rightarrow\) CD > AB

 

Như vậy trong tất cả các dây đi qua P , dây vuông góc với OP tại P có độ dài nhỏ nhất.

Bình luận (1)
tthnew
24 tháng 1 lúc 7:23

C28 để em cho.

Đặt \(\left(\sqrt{a},\sqrt{b},\sqrt{c}\right)\rightarrow\left(x,y,z\right);\left(x,y,z>0\right)\) thì \(x+y+z=2.\)

Cần chứng minh: \(\sum\dfrac{x^2+y^2}{x+y}\le4\left[\sum\dfrac{\left(x-1\right)^2}{x}\right]\)

Ta sẽ chứng minh theo hướng: \(VT\le\dfrac{3\left(x^2+y^2+z^2\right)}{x+y+z}\le\sum\dfrac{\left(y+z-x\right)^2}{x}=VP\)

Rõ ràng bất đẳng thức bên trái là quen thuộc.

Ta chỉ cần chứng minh:

\(\sum\dfrac{\left(y+z-x\right)^2}{x}\ge\dfrac{3\left(x^2+y^2+z^2\right)}{x+y+z}\quad\left(1\right)\)

Áp dụng bất đẳng thức Cauchy-Schwarz ta có:

\(VT_{\left(1\right)}\ge\dfrac{\left[\sum\left(y+z-x\right)\left(y+z\right)\right]^2}{\sum x\left(y+z\right)^2}\ge\dfrac{3\left(x^2+y^2+z^2\right)}{x+y+z}\)

Bất đẳng thức cuối tương đương:

\({\dfrac { \left( {x}^{2}+{y}^{2}+{z}^{2} \right) \left( 4\,{x}^{3}+{x} ^{2}y+{x}^{2}z+x{y}^{2}-18\,xyz+x{z}^{2}+4\,{y}^{3}+{y}^{2}z+y{z}^{2}+ 4\,{z}^{3} \right) }{ \left( {x}^{2}y+{x}^{2}z+x{y}^{2}+6\,xyz+x{z}^{2 }+{y}^{2}z+y{z}^{2} \right) \left( x+y+z \right) }}\geq 0, \)

Hiển nhiên theo AM-GM.

Đẳng thức xảy ra khi $x=y=z$ hay $\cdots$

Bình luận (1)

Khoá học trên OLM của Đại học Sư phạm HN