Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyên Dương
Xem chi tiết
Gia Bảo Phùng
Xem chi tiết
Kiều Vũ Linh
20 tháng 3 2023 lúc 15:53

A = 5x² + 6

Do x² ≥ 0 

⇒ 5x² ≥ 0

⇒ 5x² + 6 ≥ 6

Vậy giá trị nhỏ nhất của A là 6 khi x = 0

--------------------

B = 4(2x - 4)² + 2023

Do (2x - 4)² ≥ 0

⇒ 4(2x - 4)² ≥ 0

⇒ 4(2x - 4)² + 2023 ≥ 2023

Vậy giá trị nhỏ nhất của B là 2023 khi x = 2

Ngô Thành Chung
Xem chi tiết
Akai Haruma
19 tháng 1 2021 lúc 1:12

Lời giải:

a) 

Áp dụng BĐT Bunhiacopxky:

\((y-2x)^2\leq (16y^2+36x^2)(\frac{1}{16}+\frac{1}{9})=9.\frac{25}{144}\)

\(\Rightarrow \frac{-5}{4}\leq y-2x\leq \frac{5}{4}\Rightarrow \frac{15}{4}\leq y-2x+5\leq \frac{25}{4}\)

Vậy $A_{\min}=\frac{15}{4}$ và $A_{\max}=\frac{25}{4}$

b) 

Áp dụng BĐT Bunhiacopxky:

\((2x-y)^2\leq (\frac{x^2}{4}+\frac{y^2}{9})(16+9)=25\)

\(\Rightarrow -5\leq 2x-y\leq 5\Leftrightarrow -7\leq 2x-y-2\leq 3\)

Vậy $B_{min}=-7; B_{\max}=3$

Dam Do Dinh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
26 tháng 8 2020 lúc 19:00

G = 5x2 + 5y2 + 8xy + 2y - 2x + 2020

G = ( 4x2 + 8xy + 4y2 ) + ( x2 - 2x + 1 ) + ( y2 + 2y + 1 ) + 2018

G = ( 2x + 2y )2 + ( x - 1 )2 + ( y + 1 )2 + 2018

\(\hept{\begin{cases}\left(2x+2y\right)^2\\\left(x-1\right)^2\\\left(y+1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2+2018\ge2018\forall x,y\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x+2y=0\\x-1=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\)

=> MinG = 2018 <=> x = 1 ; y = -1

Khách vãng lai đã xóa
NGỌC PHƯƠNG
Xem chi tiết
Dam Do Dinh
Xem chi tiết
zZz Cool Kid_new zZz
26 tháng 8 2020 lúc 21:13

\(G=5x^2+5y^2+8xy+2y-2x+2020\)

\(=\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)+2018\)

\(=\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2+2018\ge2018\)

Đẳng thức xảy ra tại x=1;y=-1

Vậy..............

Khách vãng lai đã xóa
phạm thu hiên
Xem chi tiết
Trương Huy Hoàng
15 tháng 1 2021 lúc 22:08

Bài 1:

A = 3(x + 1)2 + 5 

Ta có: (x + 1)2 \(\ge\) 0 Với mọi x

\(\Rightarrow\) 3(x + 1)2 \(\ge\) 0 với mọi x

\(\Rightarrow\) 3(x + 1)+ 5 \(\ge\) 5 với mọi x

Hay A \(\ge\) 5

Dấu "=" xảy ra khi và chỉ khi x + 1 = 5 hay x = -1

Vậy...

B = 2|x + y| + 3x2 - 10

Ta có: 2|x + y| \(\ge\) 0 với mọi x, y

3x\(\ge\) 0 với mọi x

\(\Rightarrow\) 2|x + y| + 3x2 - 10 \(\ge\) -10 với mọi x,y

Dấu "=" xảy ra khi và chỉ khi x + y = 0; x = 0

\(\Rightarrow\) x = y = 0

Vậy ...

C = 12(x - y)2 + x2 - 6

Ta có: 12(x - y)2 \(\ge\) 0 với mọi x; y

x2 \(\ge\) 0 với mọi x

\(\Rightarrow\) 12(x - y)2 + x2 - 6 \(\ge\) -6 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x = y = 0

Phần D ko rõ đầu bài nha vì D luôn có một giá trị duy nhất

Bài 2:

Phần A ko rõ đầu bài!

B = 3 - (x + 1)2 - 3(x + 2y)2

Ta có: -(x + 1)2 \(\le\) 0 với mọi x

-3(x + 2y)\(\le\) 0 với mọi x, y

\(\Rightarrow\) 3 - (x + 1)2 - 3(x + 2y)\(\le\) 3 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x = 2y; x + 1 = 0

\(\Rightarrow\) x = -1; y = \(\dfrac{-1}{2}\)

Vậy ...

C = -12 - 3|x + 1| - 2(y - 1)2

Ta có: -3|x + 1| \(\le\) 0 với mọi x

-2(y - 1)2 \(\le\) 0 với mọi y

\(\Rightarrow\)  -12 - 3|x + 1| - 2(y - 1)\(\le\) -12 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x + 1 = 0; y - 1 = 0

\(\Rightarrow\) x = -1; y = 1

Vậy ...

Phần D đề ko rõ là \(\dfrac{5}{2x^2}-3\) hay \(\dfrac{5}{2}\)x2 - 3 nữa

F = \(\dfrac{-5}{3}\) - 2x2

Ta có: -2x2 \(\le\) 0 với mọi x

\(\Rightarrow\) \(\dfrac{-5}{3}-2x^2\) \(\le\) \(\dfrac{-5}{3}\) với mọi x

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy ...

Chúc bn học tốt!

hạ băng
Xem chi tiết
Hồng Phúc
15 tháng 8 2021 lúc 13:07

a, \(y=sin^2x-2sinx+3cos^2x\)

\(=sin^2x-2sinx+3\left(1-sin^2x\right)\)

\(=3-2sinx-2sin^2x\)

Đặt \(sinx=t\left(t\in\left[0;1\right]\right)\)

\(\Rightarrow y=f\left(t\right)=3-2t-2t^2\)

\(\Rightarrow y_{min}=min\left\{f\left(0\right);f\left(1\right)\right\}=-1\)

\(y_{max}=max\left\{f\left(0\right);f\left(1\right)\right\}=3\)

Hồng Phúc
15 tháng 8 2021 lúc 13:33

b, \(y=sinx-cosx+sin2x+5\)

\(=sinx-cosx-\left(sinx-cosx\right)^2+6\)

Đặt \(sinx-cosx=t\left(t\in\left[-\sqrt{2};\sqrt{2}\right]\right)\)

\(\Rightarrow y=f\left(t\right)=-t^2+t+6\)

\(\Rightarrow y_{min}=min\left\{f\left(-\sqrt{2}\right);f\left(0\right)\right\}=4-\sqrt{2}\)

\(y_{max}=max\left\{f\left(-\sqrt{2}\right);f\left(0\right)\right\}=6\)

Hồng Phúc
15 tháng 8 2021 lúc 13:42

c, \(y=sinx-cosx+sinx.cosx-3\)

\(=sinx-cosx-\dfrac{1}{2}\left(sinx-cosx\right)^2-\dfrac{5}{2}\)

Đặt \(sinx-cosx=t\left(t\in\left[-\sqrt{2};\sqrt{2}\right]\right)\)

\(\Rightarrow y=f\left(t\right)=-\dfrac{1}{2}t^2+t-\dfrac{5}{2}\)

\(\Rightarrow y_{min}=min\left\{f\left(-\sqrt{2}\right);f\left(\sqrt{2}\right);f\left(1\right)\right\}=-\dfrac{7+2\sqrt{2}}{2}\)

\(y_{max}=max\left\{f\left(-\sqrt{2}\right);f\left(\sqrt{2}\right);f\left(1\right)\right\}=-2\)

ThanhNghiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 10 2023 lúc 15:31

loading...  loading...  loading...